CLINICAL AND MORPHOLOGICAL PARALLELS IN MITRAL VALVE DISORDERS IN INFANTS WITH ATRIOVENTRICULAR DEFECT

Cover Page

Abstract


Mitral valves tissue samplings from children with complete (13 patients) and partial (6 patients) atrioventricular defects at the age of from 1 month to 3 years old were examined.  The biopsy material was received during the repeat surgical operation on mitral valve, performed due to residual mitral
valve regurgitation grade 3-4 at the period of time from 2 days to 1 year after radical defect correction.  
On histological examination the areas of myxomatous tissue degeneration occupying more than 50% of mitral valves surface were found in 6 (32%) of the 19 patients. There were dispersed star-shaped cells, architectonics disturbances, deposition of acid mucopolysaccharides and increased content
of matrix metalloproteinase 13 in such areas of myxomatous degeneration. The sizes of these areas correlated with mitral valve regurgitation grade.
After the radical correction of atrioventricular defect the sutures on the folds and fibrous ring of the mitral valve “cut through” reliably more often in patients with wider areas of myxomatous degeneration, which indicates poor prognosis.
According to the ultrastructural classification the majority of mitral valve cells regarded as fibroblasts; there also were found cells with the signs of myogenic differentiation – myofibroblasts and isolated hystiocytes.  According to the immunohistochemistry assay the cells phenotype regarded as
fibroblastic and endothelial differentiation; in some patients there were found cells of smooth muscle origin.

 


T. V. Sukhacheva

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Author for correspondence.
Email: tatiana@box.ru

Russian Federation кандидат биологических наук, старший научный сотрудник отдела патологической анатомии ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-78-14

B. U. Abduvokhidov

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Email: abu1967@mail.ru

Russian Federation кандидат медицинских наук, младший научный сотрудник отделения рекон- структивной хирургии новорожденных и детей первого года жизни ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-76-15

A. S. Lashneva

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Email: elph78@mail.ru

Russian Federation младший научный сотрудник отдела патологической анатомии ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-78-14

R. A. Serov

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Email: seroroman@yandex.ru

Russian Federation доктор медицинских наук, профессор, заведующий отделом патологической анатомии ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-78-53

A. I. Kim

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Email: orhn@yandex.ru

Russian Federation доктор медицинских наук, профессор, заведующий отделением реконструктивной хирургии новорожденных и детей первого года жизни ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-76-13

L. A. Bokeriya

A.N. Bakoulev Scientific Centre for Cardiovascular Surgery, RAMS, Moscow, Russian Federation

Email: nfo@heart-house.ru

Russian Federation академик РАН и РАМН, директор ФГБУ «НЦССХ им. А.Н. Бакулева» РАМН Адрес: 121552, Рублевское шоссе, д. 135 Тел.: (495) 414-75-51

  1. Tamura K., Fukuda Y., Ishizaki M. Abnormalities in elastic fibers and other connective-tissue components of floppy mitral valve. Am. Heart J. 1984; 129: 1149–1158.
  2. Rabkin E., Aikawa M., Stone J.R., Fukumoto Y., Libby P., Schoen F.J. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001; 104: 2525–2532.
  3. Gupta V., Barzilla J.E., Mendez J.S., Stephens E.H., Lee E.L. Collard C.D., Laucirica R., Weigel P.H., Grande-Allen K.J. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valve. Cardiovasc. Pathol. 2009; 18 (4): 191–197.
  4. Isakov S.V., Nemchenko E.V., Mitrofanova L.B., Gordeev M.L. Mitral valve replacement in mesenchymal dysplasia: anatomo-morphological aspects and technical specificities. Vestnik khirurgii = Journal of surgery. 2006; 165 (4): 15–19.
  5. Bokeriya L.A., Kim A.I., Shatalov K.V., Abduvokhidov B.U., Vasilevskaya A.V., Rogova T.V., Boltabaev I.I. Mitral valve replacement in infants. Detskie bolezni serdtsa i sosudov = Children's Heart and Vascular Diaseases. 2011; 1: 4–8.
  6. Rastelli G.C., Kirklin J.W., Titus J.L. Anatomic observations on complete form persistent common atrioventricular canal with special reference to atrioventrivular valves. Mayo Clin. Proc. 1966; 41: 296–308.
  7. Nasuti J.F., Zhang P.J., Feldman M.D., Pasha T., Khurana J.S., Gorman III J.H., Gorman R.C., Narula J., Narula N. Fibrillin and other matrix proteins in mitral valve prolapse syndrome. Ann. Thorac. Surg. 2004; 77 (2): 532–536.
  8. Dal-Bianco J.P., Aikawa E., Bischoff J., Guerrero J.L., Handschumacher M.D., Sullivan S., Johnson B., Titus J.S., Iwamoto Y., Wylie-Sears J., Levine R.A., Carpentier A. Active adaptation of the tendered mitral valve. Insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009; 120: 334–342.
  9. Rabkin-Aikawa E., Farber M., Aikawa M., Schoen F.J. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 2004; 13 (5): 841–847.
  10. Black A., French A.T., Dukes-McEwan J., Corcoran B.M. Ultrastructural morphologic evaluation of the phenotype of valvular interstitial cells in dogs with myxomatous degeneration of the mitral valve. Am. J .Vet .Res. 2005; 66 (8): 1408–1414.
  11. Armstrong E.J., Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004; 95: 459–470.
  12. Blevins T.L., Carroll J.L., Raza A.M., Grande-Allen K.J. Phenotypic characterization of isolated valvular interstitial cell subpopulations. J. Heart Valve Dis. 2006; 15 (6): 815–822.
  13. I-ida T., Tamura K., Tanaka S., Asano G. Blood vessels in normal and abnormal mitral valve leaflets. J. Nippon. Med. Sci. 2001; 68 (2): 171–180.
  14. Han R.I., Black A., Culshaw G.J., French A.T., Else R.W., Corcoran B.M. Distribution of myofibroblasts, smooth muscle-like cells, macrophages, and mast cells in mitral valve leaflets of dogs with myxomatous mitral valve disease. Am. J. Vet. Res. 2008; 69 (6): 763–769.
  15. Disatian S., Ehrhart E.J. 3rd, Zimmerman S., Orton E.C. Interstitial cells from dogs with naturally occurring myxomatous mitral valve disease undergo phenotype transformation. J. Heart Valve Dis. 2008; 17 (4): 402–411.
  16. Barth P.J., Köster H., Moosdorf R. CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol. Res. Pract. 2005; 201 (4): 301–304.

Views

Abstract - 47

PDF (Russian) - 23

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies