Experimental study of the antibacterial activity of the lytic Staphylococcus aureus bacteriophage ph20 and lytic Pseudomonas aeruginosa bacteriophage ph57 during modelling of its impregnation into poly(methylmetacrylate) orthopedic implants (bone cement)

Cover Page
  • Authors: Samokhin A.G.1, Kozlova J.N.2, Korneev D.V.3, Taranov O.S.3, Fedorov E.A.1, Pavlov V.V.1, Morozova V.V.2, Tikunova N.V.2
  • Affiliations:
    1. Novosibirsk research institute of traumatology and orthopaedics n.a. Ya. L. Tsivyan
    2. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
    3. Federal scientific centre of virology and biotechnology “Vector”
  • Issue: Vol 73, No 1 (2018)
  • Pages: 59-68
  • Section: TRAUMATOLOGY: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/905
  • DOI: https://doi.org/10.15690/vramn905

Abstract


Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.

Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.

Materials and methods:  First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction  temperatures (+6…+25°C and +18…+50°C).

The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.

Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25°C.

The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.

Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.

A. G. Samokhin

Novosibirsk research institute of traumatology and orthopaedics n.a. Ya. L. Tsivyan

Author for correspondence.
Email: motorist@inbox.ru
ORCID iD: 0000-0001-5599-3925

Russian Federation

SPIN-код: 4482-7718 

Novosibirsk

Ju. N. Kozlova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: ulona@ngs.ru
ORCID iD: 0000-0003-0811-8110

Russian Federation Novosibirsk

D. V. Korneev

Federal scientific centre of virology and biotechnology “Vector”

Email: korneev_dv@vector.nsc.ru
ORCID iD: 0000-0003-4350-8317

Russian Federation Koltsovo

O. S. Taranov

Federal scientific centre of virology and biotechnology “Vector”

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092

Russian Federation

SPIN-код: 5894-6518 

Koltsovo

E. A. Fedorov

Novosibirsk research institute of traumatology and orthopaedics n.a. Ya. L. Tsivyan

Email: evgeniifedorov1987@mail.ru
ORCID iD: 0000-0003-4084-4956

Russian Federation Novosibirsk

V. V. Pavlov

Novosibirsk research institute of traumatology and orthopaedics n.a. Ya. L. Tsivyan

Email: pavlovdoc@mail.ru
ORCID iD: 0000-0002-8997-7330

Russian Federation

SPIN-код: 7596-2960.

Novosibirsk

V. V. Morozova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: morozova@niboch.nsc.ru
ORCID iD: 0000-0002-0869-3476

Russian Federation

SPIN-код: 2096-3645 

Novosibirsk

N. V. Tikunova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: tikunova@niboch.nsc.ru
ORCID iD: 0000-0002-1687-8278

Russian Federation

SPIN-код: 4915-9723 

Novosibirsk

  1. Skurnik D, Davis MR Jr, Benedetti D, et al. Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. J Infect Dis. 2012;205(11):1709–1718. doi: 10.1093/infdis/jis254.
  2. Самохин А.Г., Козлова Ю.Н., Корнеев Д.В., и др. Современные экспериментальные методы предотвращения бактериальной адгезии и нарушения внутреннего гомеостаза бактерий: обзор литературы // Международный журнал прикладных и фундаментальных исследований. ― 2017. ― №11−2 ― С. 248−254. [Samokhin AG, Kozlova YuN, Korneev DV, et al. Modern experimental methods of bacterial adhesion prevention and bacterial internal homeostasis impairment: a review. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2017;(11−2):248−254. (In Russ).]
  3. Baker AS, Greenham LW. Release of gentamicin from acrylic bone cement. Elution and diffusion studies. J Bone Joint Surg Am. 1988;70(10):1551–1557. doi: 10.2106/00004623-198870100-00015.
  4. Schiefer UR, Heiss C, Dingeldein E, et al. [Elution kinetics and antimicrobial effects of gentamicin- and clindamycin-loaded bone cements in vitro. (In German).] Z Orthop Unfall. 2008;146(1):92–98. doi: 10.1055/s-2007-989301.
  5. Wang J, Zhu C, Cheng T, et al. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One. 2013;8(12):e82745. doi: 10.1371/journal.pone.0082745.
  6. Hinarejos P, Guirro P, Puig-Verdie L, et al. Use of antibiotic-loaded cement in total knee arthroplasty. World J Orthop. 2015;6(11):877–885. doi: 10.5312/wjo.v6.i11.877.
  7. Тикунова Н.В., Власов В.В. Бактериофаги ― враги наших врагов // Наука из первых рук. ― 2013. ― №2 ― С. 58−69. [Tikunova NV, Vlasov VV. Bakteriofagi ― vragi nashikh vragov. Nauka iz pervykh ruk. 2013;(2):58−69. (In Russ).]
  8. Самохин А.Г., Фёдоров Е.А., Козлова Ю.Н., и др. Применение литических бактериофагов при хирургическом лечении парапротезной инфекции эндопротеза тазобедренного сустава (пилотное исследование) // Современные проблемы науки и образования. ― 2016. ― №6. [Samokhin AG, Fedorov EA, Kozlova YuN, et al. pplication of the lytic bacteriophages during surgical treatment of the periprosthetic infection of the hip joint endoprosthesis (pilot study). Sovremennye problemy nauki i obrazovaniya. 2016;(6). (In Russ).]
  9. Fenton M, Ross P, McAuliffe O, et al. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs. 2010;1(1):9–16. doi: 10.4161/bbug.1.1.9818.
  10. Bunetel L, Segui A, Cormier M, et al. Release of gentamicin from acrylic bone cement. Clin Pharmacokinet. 1989;17(4):291–297. doi: 10.2165/00003088-198917040-00006.
  11. Патент на изобретение РФ RU 2475273. Козлова Ю.Н., Самохин А.Г., Павлов В.В., Репин В.Е. Способ получения полимерного цемента медицинского назначения. Опубл. 20.02.2013. [Patent RU №2475273 / 20.02.2013. Byul. №5. Kozlova YuN, Samokhin AG, Pavlov VV, Repin VE. Sposob polucheniya polimernogo tsementa meditsinskogo naznacheniya. (In Russ).] Доступно по: http://www.freepatent.ru/images/patents/257/2475273/patent-2475273.pdf. Ссылка активна на 12.12.2017.

Views

Abstract - 13

PDF (Russian) - 5

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.