STEM/PROGENITOR CELLS ADHESION STRENGTHENING TO SYNTHETIC MATERIAL USING EXTRACELLULAR MATRIX
- Authors: Lykov A.P.1,2, Poveshchenko O.V.1,2, Bondarenko A.N.1,2, Surovtseva M.A.1,2, Kim I.I.1,2
-
Affiliations:
- Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Research Institute of Circulation Pathology
- Issue: Vol 72, No 5 (2017)
- Pages: 336-345
- Section: CELL TRANSPLANTOLOGY AND TISSUE ENGINEERING: CURRENT ISSUES
- Published: 25.10.2017
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/882
- DOI: https://doi.org/10.15690/vramn882
- ID: 882
Cite item
Full Text
Abstract
Background: Tissue-engineered vascular grafts of small diameter have being widely used in coronary artery bypass grafting. However, the rate of settling of these grafts with endothelial cells is insufficient. Aims:
The aim of the study was to selucidate the adhesion of endothelial progenitor cells and mesenchymal stem cells to synthetic materials (polystyrol, polytetrafluoroethylene) preprocessed with extracellular matrix (gelatin, fibronectin, collagen) in vitro.
Materials and methods: For the study,the endothelial progenitor cells (EPC) were isolated from the peripheral blood of patients with ischemic heart disease, and mesenchymal stem cells (MSC) — from bone marrow of Wistar rats. Commercial monoclonal antibodies for flow- cytometry were used to determine the phenotype of EPC. To isolate the early and late EPC from mononuclear cells of peripheral blood, cells were raised for 8 and 16 days on a gelatin or fibronectin based substrate. The commercial kits for enzyme linked immunoassay were applied to assess levels of cytokine production and nitric oxide by early and late EPC conditioned by gelatin or fibronectin on the 8th and 16th days of growth. To conduct the study the MSC were isolated from bone marrow of rats. To determine the attachment of adherent fraction of nucleated bone marrow cells, cell morphology, the adipogenic and osteogenic differentiation were evaluated. To assess migration of MSC in real time within 24 hours on the device Cell-IQ, we used «closure/wound healing» test. The commercial kits for enzyme linked immunoassay were applied to assess levels of cytokine production and nitric oxide by MSC; and components of the extracellular matrix (fibronectin, collagen I and type IV) ― to assess the increased adhesion of MSC to the polytetrafluoroethylene.
Results: The results demonstrated that endothelial progenitor cells adhere to both gelatin and fibronectin and confirmed the influence of these extracellular matrix components on the cytokine levels produced by early and late endothelial cells. The combination of fibronectin with type I or IV collagen or the combination of thereof promotes the adhesion to polytetrafluoroethylene and colonization of the graft.
Conclusions: Preprocessing of synthetic material (polystyrene, polytetrafluoroethylene) enhances adhesion and growth of EPC and MSC which can be implemented when creating tissue-engineered vascular grafts for small diameter coronary artery bypass grafting with specified conditions of settlement by the cells involved in neointima formation.
About the authors
A. P. Lykov
Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Circulation Pathology
Author for correspondence.
Email: aplykov2@mail.ru
ORCID iD: 0000-0003-4897-8676
Novosibirsk Россия
O. V. Poveshchenko
Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Circulation Pathology
Email: poveshchenkoov@yandex.ru
ORCID iD: 0000-0001-9956-0056
Novosibirsk Россия
A. N. Bondarenko
Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Circulation Pathology
Email: bond80288@yandex.ru
ORCID iD: 0000-0002-8443-656X
Novosibirsk Россия
M. A. Surovtseva
Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Circulation Pathology
Email: mfelde@ngs.ru
ORCID iD: 0000-0002-4752-988X
Novosibirsk Россия
I. I. Kim
Research Institute of Clinical and Experimental Lymрhology ― Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Circulation Pathology
Email: kii5@mail.ru
ORCID iD: 0000-0002-7380-2763
Novosibirsk Россия
References
- Бокерия Л.А., Пурснов М.Г., Соболев А.В., и др. Анализ результатов интраоперационной шунтографии у 600 больных ишемической болезнью сердца после операции коронарного шунтирования // Грудная и сердечно-сосудистая хирургия. ― 2016. ― Т. 58. ― №3 ― С. 143–151. [Bockeria LA, Pursanov MG, Sobolev AV, et al. Analysis of the results of intraoperative angiography in 600 patients after coronary artery bypass surgery. Grud Serdechnososudistaia Khir. 2016;58(3):143−151. (In Russ).]
- Шумков К.В, Лефтерова Н.П., Пак Н.Л., и др. Аортокоронарное шунтирование в условиях искусственного кровообращения и на работающем сердце: сравнительный анализ ближайших и отдаленных результатов и послеоперационных осложнений (нарушения ритма сердца, когнитивные и неврологические расстройства, реологические особенности и состояние системы гемостаза) // Креативная кардиология. ― 2009. ― №1 ― С. 28–50. [Shumkov KV, Lefterova NP, Pak NL, et al. Coronary artery bypass grafting in conditions of artificial blood and a beating heart: a comparative analysis of immediate and long-term results and postoperative complications (arrhythmias, cognitive and neurological disorders, rheological characteristics and hemostasis). Creative cardiology. 2009;(1):28−50. (In Russ).]
- Севостьянова В.В., Головкин А.С., Филипьев Д.Е., и др. Выбор оптимальных параметров электроспиннинга для изготовления сосудистого графта малого диаметра из поликапролактона // Фундаментальные исследования. ― 2014. ― №10–1 ― С. 180–184. [Sevostyanova VV, Golovkin AS, Philipey DE, et al. Optimal parameters of electrospinning for small-diameter polycaprolactone vascular graft fabrication. Fundamental’nye issledovaniya. 2014;(10–1):180−184 (In Russ).]
- Jantzen AE, Lane WO, Gage SM, et al. Autologous endothelial progenitor cell-seeding technology and biocompatibility testing for cardiovascular devices in large animal model. J Vis Exp. 2011;(55): e3197. doi: 10.3791/3197.
- Laube HR, Duwe J, Rutsch W, Konertz W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg. 2000;120(1):134–141. doi: 10.1067/mtc.2000.106327.
- Scharner D, Rossig L, Carmona G, et al. Caspase-8 is involved in neovascularization-promoting progenitor cell functions. Arterioscler Thromb Vasc Biol. 2009;29(4):571–578. doi: 10.1161/ATVBAHA.108.182006.
- Смагин А.А., Кочеткова М.В., Хабаров Д.В., Повещенко О.В. Методика выделения из периферической крови мобилизированных клеток костного мозга с использованием процедуры цитафереза // Международный журнал экспериментального образования. ― 2013. ― №11–2 ― С. 56–58. [Smagin AA, Kochetkova MV, Khabarov DV, Poveshchenko OV. Method of isolation mobilized bone marrow cells from peripheral blood by the procedure cytapheresis. Mezhdunarodnyi zhurnal eksperimental’nogo obrazovaniya. 2013;(11–2):56−58. (In Russ).]
- Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23(7):1185–1189. doi: 10.1161/01.Atv.0000073832.49290.B5.
- Medina RJ, O’Neill CL, Sweeney M, et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics. 2010;3:18. doi: 10.1186/1755-8794-3-18.
- Angelos MG, Brown MA, Satterwhite LL, et al. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress. Biophys J. 2010;99(11):3545–3554. doi: 10.1016/j.bpj.2010.10.004.
- To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair. 2011;4:21. doi: 10.1186/1755-1536-4-21.
- Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007;100(4):590–597. doi: 10.1161/01.RES.0000259043.42571.68.
- Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24(2):288–293. doi: 10.1161/01.ATV.0000114236.77009.06.
- Lai Y, Shen Y, Liu XH, et al. Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway. Int J Biol Sci. 2011;7(6):782–791.
- Qiao W, Niu LY, Liu Z, et al. Endothelial nitric oxide synthase as a marker for human endothelial progenitor cells. Tohoku J Exp Med. 2010;221(1):19–27. doi: 10.1620/tjem.221.19.
- Ribatti D, Presta M, Vacca A, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood. 1999;93(8):2627–2636.
- Wang QR, Wang BH, Zhu WB, et al. An in vitro study of differentiation of hematopoietic cells to endothelial cells. Bone Marrow Res. 2011;2011:846096. doi: 10.1155/2011/846096.
- Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–228. doi: 10.1161/01.res.85.3.221.
- Ahrens I, Domeij H, Topcic D, et al. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS One. 2011;6(8):e23210. doi: 10.1371/journal.pone.0023210.
- Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol. 2006;26(10):2238–2243. doi: 10.1161/01.ATV.0000240248.55172.dd.
- Yamawaki-Ogata A, Fu XM, Hashizume R, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model. Eur J Cardiothorac Surg. 2014;45(5):e156–e165. doi: 10.1093/ejcts/ezu018.
- Shoji M, Koba S, Kobayashi Y. Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. Biomed Res Int. 2014;2014:1–8. doi: 10.1155/2014/945127.
- Rotmans JI. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005;112(1):12–18. doi: 10.1161/circulationaha.104.504407.
- Larsen CC, Kligman F, Kottke-Marchant K, Marchant RE. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials. 2006;27(28):4846–4855. doi: 10.1016/j.biomaterials.2006.05.009.
- Dohmen PM, Pruss A, Koch C, et al. Six years of clinical follow-up with endothelial cell–seeded small-diameter vascular grafts during coronary bypass surgery. J Tissue Eng. 2013;4:204173141350477. doi: 10.1177/2041731413504777.