Tissue-Engineered Constructions for the Needs of Cardiovascular Surgery: Possibilities of Personalization and Prospects for Use (Problem Article)
- Authors: Antonova L.V.1, Barbarash O.L.1, Barbarash L.S.1
-
Affiliations:
- Research Institute for Complex Issues of Cardiovascular Diseases
- Issue: Vol 78, No 2 (2023)
- Pages: 141-150
- Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/7578
- DOI: https://doi.org/10.15690/vramn7578
- ID: 7578
Cite item
Abstract
In the market for products for the needs of cardiovascular surgery, there is still no effective vascular prosthesis with a diameter of less than 4 mm, despite the continuous increase in the incidence of atherosclerosis and the increase in the number of surgical operations to restore blood flow in the affected arteries. At the same time, vascular tissue engineering has diverse methodological approaches for the development of effective functionally active small-diameter vascular prostheses suitable for adaptive growth and regeneration in situ. An important aspect is the possibility of personalizing the created prostheses not only by taking into account the individual anatomy of the patient’s vascular bed, but also by using autologous components to create such a prosthesis, which can be obtained directly from the recipient. The presented problematic article reflects the main results on the creation of biodegradable vascular prostheses of small diameter, obtained at the Research Institute of the Research institute for complex issues of cardiovascular diseases (Kemerovo). The functionality of the prostheses was provided both through the incorporation of biologically active components with proangiogenic potential for the purpose of complete remodeling in situ, and the formation of cell-populated vascular prostheses using autologous cells and proteins from patients with coronary heart disease. In the future, these vascular prostheses can cover the clinical need for elective and emergency cardiovascular surgery, neuro- and microsurgery, and military field vascular surgery.
Full Text

About the authors
Larisa V. Antonova
Research Institute for Complex Issues of Cardiovascular Diseases
Author for correspondence.
Email: antonova.la@mail.ru
ORCID iD: 0000-0002-8874-0788
SPIN-code: 8634-3286
MD, PhDRussian Federation, Kemerovo
Olga L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Email: barbol@kemcardio.ru
ORCID iD: 0000-0002-4642-3610
SPIN-code: 5373-7620
MD, PhD, Professor, Academician of the RAS
Russian Federation, KemerovoLeonid S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Email: reception@kemcardio.ru
ORCID iD: 0000-0001-6981-9661
MD, PhD, Professor, Academican of the RAS
Russian Federation, KemerovoReferences
- Benjamin EJ, Muntner P, Alonso A, et al. Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–e528. doi: https://doi.org/10.1161/CIR.0000000000000659
- Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2(4):427–430. doi: https://doi.org/10.3978/j.issn.2225-319X.2013.07.21
- Kitsuka T, Hama R, Ulziibayar A, et al. Clinical Application for Tissue Engineering Focused on Materials. Biomedicines. 2022;10(6):1439. doi: https://doi.org/10.3390/biomedicines10061439
- Moore MJ, Tan RP, Yang N, et al. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40(6):693–707. doi: https://doi.org/10.1016/j.tibtech.2021.11.003
- Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their in vivo Evaluation in Large Animals and Humans. Cells. 2021;10(3):713. doi: https://doi.org/10.3390/cells10030713
- Naegeli KM, Kural MH, Li Y, et al. Bioengineering Human Tissues and the Future of Vascular Replacement. Circ Res. 2022:131(1):109–126. doi: https://doi.org/10.1161/CIRCRESAHA.121.319984
- Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials. 2018;173:71–86. doi: https://doi.org/10.1016/j.biomaterials.2018.05.006
- Zhu M, Wu Yi, Li W, et al. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials. 2018;183:306–318. doi: https://doi.org/10.1016/j.biomaterials.2018.08.063
- Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, et al. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol. 2021;9:771400. doi: https://doi.org/10.3389/fbioe.2021.771400
- Matsuzaki Yu, Iwaki R, Reinhardt JW, et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomate. 2020;115:176–184. doi: https://doi.org/10.1016/j.actbio.2020.08.011
- Zhao L, Lic X, Yang L, et al. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Mater Sci Eng C Mater Biol Appl. 2021;118:111441. doi: https://doi.org/10.1016/j.msec.2020.111441
- Antonova LV, Sevostyanova VV, Mironov AV, et al. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018;7(2):25–36. doi: https://doi.org/10.17802/2306-1278-2018-7-2-25-36
- Hao D, Fan Y, Xiao W, et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020;108:178–193. doi: https://doi.org/10.1016/j.actbio.2020.03.005
- Maitz MF, Martins MCL, Grabow N, et al. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater. 2019;94:33–33. doi: https://doi.org/10.1016/j.actbio.2019.06.019
- Matsuzaki Yu, Miyamoto S, Miyachi H, et al. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft with Heparin Conjugation. Ann Thorac Surg. 2021;111(4):1234–1241. doi: https://doi.org/10.1016/j.athoracsur.2020.06.112
- Wang C, Li Z, Zhang L, et al. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020;85:1–6. doi: https://doi.org/10.1016/j.medengphy.2020.09.007
- Matsuzaki Y, Ulziibayar A, Shoji T, et al. Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences. 2021;11(10):4563. doi: https://doi.org/10.3390/app11104563
- Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002;111(1–2):61–73. doi: https://doi.org/10.1016/s0925-4773(01)00601-3
- Takahashi H, Hattori S, Iwamatsu A, et al. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem. 2004;279(44):46304–46314. doi: https://doi.org/10.1074/jbc.M403687200
- Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005;118(Pt16):3759–3768. doi: https://doi.org/10.1242/jcs.02483
- Ho TK, Shiwen X, Abraham D, et al. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia. Cardiol Res Pract. 2012;2012:143209. doi: https://doi.org/10.1155/2012/143209
- Thomas LV, Lekshmi V, Nair PD. Tissue engineered vascular grafts-preclinical aspects. Int J Cardiol. 2013;167(4):1091–1100. doi: https://doi.org/10.1016/j.ijcard.2012.09.069
- Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013;24(5):916–925. doi: https://doi.org/10.1016/j.copbio.2013.05.005
- Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials. 2014;35(33):9033–9040. doi: https://doi.org/10.1016/j.biomaterials.2014.07.008
- Antonova LV, Mironov AV, Yuzhalin AE, et al. A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep. Pharmaceuticals (Basel). 2020;13(5):101. doi: https://doi.org/10.3390/ph13050101
- Fukunishi T, Ong CS, Yesantharao P, et al. Different degradation rates of nanofiber vascular grafts in small and large animal models. J Tissue Eng Regen Med. 2020;14(2):203–214. doi: https://doi.org/10.1002/term.2977
- Антонова Л.В., Кривкина Е.О., Резвова М.А., и др. Биодеградируемый сосудистый протез с армирующим внешним каркасом // Комплексные проблемы сердечно-сосудистых заболеваний. — 2019. — Т. 8. — № 2. — С. 87–97. [Antonova LV, Krivkina EO, Rezvova MA, et al. Biodegradable vascular graft reinforced with a biodegradable sheath. Complex Issues of Cardiovascular Diseases. 2019;8(2):87–97. (In Russ.)] doi: https://doi.org/10.17802/2306-1278-2019-8-2-87-97
- Патент РФ на изобретение № 2702239/07.10.2019, Бюл. № 28. Антонова Л.В., Севостьянова В.В., Резвова М.А., Кривкина Е.О., Кудрявцева Ю.А., Барбараш О.Л., Барбараш Л.С. Технология изготовления функционально активных биодеградируемых сосудистых протезов малого диаметра с лекарственным покрытием. [Patent RUS №2702239/ 07.10.2019. Byul. №28. Antonova LV, Sevostianova VV, Rezvova MA, Krivkina EO, Kudryavtseva YuA, Barbarash OL, Barbarash LS. Technology of producing functionally active biodegradable small-diameter vascular prostheses with drug coating. (In Russ).] Available from: https://patents.google.com/patent/RU2702239C1/ru (accessed: 22.02.2023).
- Груздева О.В., Бычкова Е.Е., Пенская Т.Ю., и др. Сравнительная характеристика гемостазиологического профиля овец и пациентов с сердечно-сосудистой патологией — основа для прогнозирования тромботических рисков в ходе преклинических испытаний сосудистых протезов // Современные технологии в медицине. — 2021. — Т. 13. — № 1. — С. 52–58. [Gruzdeva OV, Bychkova EE, Penskaya TY, et al. Comparative Analysis of the Hemostasiological Profile in Sheep and Patients with Cardiovascular Pathology as the Basis for Predicting Thrombotic Risks During Preclinical Tests of Vascular Prostheses. Sovrem Tekhnologii Med. 2021;13(1):52–56. (In Russ.)] doi: https://doi.org/10.17691/stm2021.13.1.06
- Antonova LV, Krivkina EO, Sevostianova VV, et al. Tissue-engineered carotid artery interposition grafts demonstrate high primary patency and promote vascular tissue regeneration in the ovine model. Polymers. 2021;13(16):2637. doi: https://doi.org/10.3390/ polym13162637
- Matveeva V, Khanova M, Sardin E, et al. Endovascular interventions permit isolation of endothelial colony-forming cells from peripheral blood. Int J Mol Sci. 2018;19(11):3453. doi: https://doi.org/10.3390/ijms19113453
- Матвеева В.Г., Ханова М.Ю., Антонова Л.В., и др. Фибрин — перспективный материал для тканевой сосудистой инженерии // Вестник трансплантологии и искусственных органов. — 2020. — Т. 22. — № 1. — С. 196–208. [Matveeva VG, Khanova MU, Antonova LV, et al. Fibrin — a promising material for vascular tissue engineering. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):196–208. (In Russ.)] doi: https://doi.org/10.15825/1995-1191-2020-1-196-208
- Матвеева В.Г., Сенокосова Е.А., Ханова М.Ю., и др. Влияние способа полимеризации на свойства фибриновых матриц (пилотное исследование in vitro) // Комплексные проблемы сердечно-сосудистых заболеваний. — 2022. — Т. 11. — № 4S. — С. 134–145. [Matveeva VG, Senokosova EA, Khanova MYu, et al. Influence of the polymerization method on the properties of fibrin matrices. Complex Issues of Cardiovascular Diseases. 2022;11(4S):134-145. (In Russ.)] doi: https://doi.org/10.17802/2306-1278-2022-11-4S-134-145
- Matveeva VG, Senokosova EA, Sevostianova VV, et al. Advantages of Fibrin Polymerization Method without the Use of Exogenous Thrombin for Vascular Tissue Engineering Applications. Biomedicines. 2022;10(4):789. doi: https://doi.org/10.3390/biomedicines10040789
- Ханова М.Ю., Великанова Е.А., Матвеева В.Г., и др. Формирование монослоя эндотелиальных клеток на поверхности сосудистого протеза малого диаметра в условиях потока // Вестник трансплантологии и искусственных органов. — 2021. — Т. 23. — № 3. — С. 101–114. [Khanova MYu, Velikanova EA, Matveeva VG, et al. Endothelial cell monolayer formation on a small-diameter vascular graft surface under pulsatile flow conditions. Russian Journal of Transplantology and Artificial Organs. 2021;23(3):101–114. (In Russ.)] doi: https://doi.org/10.15825/1995-1191-2021-3-101-114
Supplementary files
