Orbital Adipose Tissue: Just a Fat Pad or Terra Incognita in Ophthalmology

Cover Page

Abstract


Our understanding of the role of adipose tissue has been completely changed during the past decades. The knowledge of its contribution to endocrine and immune pathways opened the new insights on the pathogenesis and therapy of many diseases and new perspectives for the regenerative medicine. The further researches should be provided to study anatomy and functions of local fat depots in more details. Of the most interest is the orbital adipose tissue due to its origin from the neural crest. This review represents the current data about anatomy, structure, cell composition and biochemistry of orbital fat. The main attention is put to such cell types as adipocytes and adipose derived mesenchymal stem cells. The foreign authors’ findings on such characteristics of stem cells from orbital adipose tissue as CD markers and differential capacity are reviewed. The found evidences of interaction between orbital adipose tissue, eyeball and associated structures allow us to hypothesize that this fat depot may contribute to various ocular pathology. In this paper, we outlined the possible directions for further investigation and clinical application of orbital fat and cells its composing in ophthalmology, reconstructive and plastic surgery and regenerative medicine.

S. A. Borzenok

S.N. Fyodorov Eye Microsurgery State Institution;
Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: borzenok@mntk.ru

Russian Federation Moscow

D. S. Afanasyeva

S.N. Fyodorov Eye Microsurgery State Institution

Email: ada-tomsk@yandex.ru

Russian Federation Moscow

M. B. Gushchina

S.N. Fyodorov Eye Microsurgery State Institution

Email: mbg1411@yandex.ru

Russian Federation Moscow

  1. Tran T.T., Kahn C.R. Transplantation of adipose tissue and adipose-derived stem cells as a tool to study metabolic physiology and for treatment of disease. Nat. Rev. Endocrinol. 2010; 6: 195–213.
  2. Shwarz V. Adipose tissue as an organ of the immune system. Tsitokiny i vospalenie = Cytokines & inflammation. 2009;4. Available at: http://www.cytokines.ru/2009/4/Art1.php. (accessed:10.04.2015).
  3. Planat-Benard V., Silvestre J.S., Cousin B., André M., Nibbelink M., Tamarat R. Plasticity of human adipose lineage cells toward endothelial cells — Physiological and therapeutic perspectives. Circulation. 2004; 109 (5): 656–663.
  4. Schäffler A., Müller-Ladner U., Schölmerich J., Büchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr. Rev. 2006; 27 (5): 449–467.
  5. Osikhov I.A., Bespalova I.D., Bychkov V.A., Ryazantseva N.V., Kalyuzhin V.V., Afanas'eva D.S. Violations of cell-cell interactions in the pathogenesis of adipose tissue inflammation in the metabolic syndrome. Byulleten' Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk = Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2013;34(4):51–58.
  6. Salgado A.J., Reis R.L., Sousa N., Gimble J.M. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 2010; 5: 103–110.
  7. Vit V. Stroenie zritel'noi sistemy cheloveka [Structure of Human Visual System]. Odessa, Astroprint, 2010. 587 p.
  8. Johnston M.C., Noden D.M., Hazelton R.D., Coulombre J.L., Coulombre A.J. Origins of avian ocular and periocular tissues. Exp. Eye Res. 1979; 29: 27–43.
  9. Sorozhkina E.S., Sirmais O.S. Role of immunological factors in the pathogenesis of endocrine ophthalmopathy. Rossiiskii oftal'mologicheskii zhurnal = Russian ophthalmological journal. 2013;3:106–112.
  10. Shilkin G.A., Gemonov V.V., Andreitsev A.N., Ivanova Z.G., Kalinnikov Yu.Yu., Shilkin A.G. Embriogenez i funktsii retrobul'barnoi kletchatki i ee svyaz' s klinicheskoi oftal'mologiei. Aktual'nye voprosy detskoi oftal'mologii [Embryogenesis and Retrobulbar Tissue Function and its Relationship with Clinical Ophthalmology. Actual Problems of Pediatric Ophthalmology]. Moscow, 1990. P. 154–160.
  11. Shilkin G.A., Chabrov A.E., Davydov D.V., Naumenko N.A., Ivanova Z.G., Andreitsev A.N. Morfologicheskie osobennosti retrobul'barnoi kletchatki u cheloveka v rannem vozrastnom periode. Aktual'nye voprosy detskoi oftal'mologii [Morphological Features of Retrobulbar Fat in Humans at an Early Age Period. Actual Problems of Pediatric Ophthalmology].Moscow, 1990. P. 161–165.
  12. Shilkin G.A., Mikhailova G.D., Klimov N.I., Kharizov A.A. Ul'trazvukovaya kharakteristika retrobul'barnoi kletchatki. Lazernye metody lecheniya i angiograficheskie issledovaniya v oftal'mologii [Ultrasonic Characterization of Retrobulbar Fat. Laser Treatments and Angiographic Studies in Ophthalmology]. Moscow, 1983. P. 266–271.
  13. Turney T.A., Golden B.A. Orbital anatomy for the surgeon. Oral Maxillofacial. Surg. Clin. North Am. 2012; 24: 525–536.
  14. Ahmadi A.J. Saari J.C. Decreased carotenoid content in preaponeurotic orbital fat of patients with involutional ptosis. Ophthal. Plast. Reconstr. Surg. 2005; 21 (1): 46–51.
  15. Meier S. The distribution of cranial neural crest cells during ocular morpho-genesis. Prog. Clin. Biol. Res. 1982; 82: 1–15.
  16. Bremond-Gignac D., Copin H. Anatomical histological and mesoscopic study of the adipose tissue of the orbit. Surg. Radiol. Anat. 2004; 26 (4): 297–302.
  17. Gesta S., Tseng Y.H., Kahn C.R. Developmental origin of fat: tracking obesity to its source. Cell. 2007; 131 (2): 242–256.
  18. Stojanov O., Stokić E., Sveljo O., Naumović N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity. Vojnosanit Pregl. 2013; 70 (5): 469–476.
  19. Wiersinga W.M., Kahaly G. Graves’ orbitopathy: a multidisciplinary approach: questions and answers. Karger Medical and Scientific Publishers. 2007. 260 р.
  20. Onyimba C., Bujalska I., Durrani O., Abbott J., Khosla P., Moosavi A. Glucocorticoid metabolic pathways in human orbital adipose tissue: a comparison with subcutaneous and omental depots. Endocrine. Abstracts. 2007; 13: 115.
  21. Ilankovan V., Soames J.V. Morphometric analysis of orbital, buccal and subcutaneous fats: their potential in the treatment of enophthalmos. Brit. J. Oral Maxillofac Surg. 1995; 33(1): 40–42.
  22. Sires B.S., Lemke B.N., Dortzbach R.K., Gonnering R.S. Characterization of human orbital fat and connective tissue. Ophthal Plast Reconstr. Surg. 1998; 14 (6): 403–414.
  23. Korn B.S., Kikkawa D.O., Hicok K.C. Identification and characterization of adult stem cells. Ophthal. Plast. Reconstr. Surg. 2009; 25 (1): 27–32.
  24. Chen S.Y., Mahabole M., Horesh E., Wester S., Goldberg J.L., Tseng S.C. Isolation and characterization of mesenchymal progenitor cells from human orbital adipose tissue. Invest. Ophthalmol. Vis. Sci. 2014; 55 (8): 4842–4852.
  25. Ho I.H., Ma W.H., Tseng T.C., Chen Y.F., Chen M.H., Lee O.K. Isolation and characterization of milti-potent stem cells from human orbital fat tissues. Tissue Eng. Part A. 2011; 1–2: 255–266.
  26. Park J., Cho H.K., Moon J.I. Changes to upper eyelid orbital fat from use of topical bimatoprost, travoprost, and latanoprost. Jpn. J. Ophthalmol. 2011; 55 (1): 22–27.
  27. Ahmadi A.J., Saari J.C., Mozaffarian D., Garwin G.G., Tarbet K.J., Orcutt J.C. Decreased carotenoid content in preaponeurotic orbital fat of patients with involutional ptosis. Ophthal. Plast. Reconstr. Surg. 2005; 21 (1): 46–51.
  28. Wester S.T. Orbital stem cells. Curr. Ophthalmol. Rep. 2014; 2: 107–115.
  29. Lin K.J., Loi M.X., Lien G.S., Cheng C.F., Pao H.Y., Chang Y.Ch. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res. Ther. 2013; 4 (3): 72.
  30. Chien M.H., Bien M.Y., Ku C.C., Chang Y.C., Pao H.Y., Yang Y.L. Systemic human orbital fat-derived stem/stromal cell transplantation ameliorates acute inflammation in lipopolysaccharide-induced acute lung injury. Crit. Care Med. 2012; 40 (4): 1245–1253.

Views

Abstract - 64

PDF (Russian) - 4

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.