Phenotypic Mechanisms of Biofilm Resistance to Antibiotics

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Considering that the current global problems are a trend towards increasing resistance of microorganisms to antibiotics and issues related to biofilm infections, the purpose of this review was to analyze modern data on the population level of biofilm resistance, which explains their increased resistance to antibiotics. One of the main introductory postulates is that the bacteria in a biofilm have not only genetic, but also phenotypic mechanisms of resistance to antibiotics, which is due to the population level of biofilm organization. This study revealed the main causes of phenotypic resistance of biofilms: quorum sensing, matrix composition, heterogeneity of microbial populations due to the biofilm architecture, and the mechanisms of persister cell formation. In conclusion, the relevance of considering the phenomenon of collective resistance of bacterial cells to antibacterial drugs in biofilm consortia in relation to infectious agents is summarized for a detailed understanding of the issue under consideration and the formation of appropriate programs in the clinical and preventive fields of medical science.

Full Text

Restricted Access

About the authors

Evgeny D. Savilov

Scientific Centre for Family Health and Human Reproduction Problems, Institute of Epidemiology and Microbiology; Irkutsk State Medical Academy of Postgraduate Education

Author for correspondence.
Email: savilov47@gmail.com
ORCID iD: 0000-0002-9217-6876
SPIN-code: 1057-7837

MD, PhD, Professor

Россия, Irkutsk; Irkutsk

Yulia A. Markova

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: juliam06@mail.ru
ORCID iD: 0000-0001-7767-4204
SPIN-code: 9983-0764

PhD in Biology

Россия, Irkutsk

Natalia L. Belkova

Scientific Centre for Family Health and Human Reproduction Problems, Institute of Epidemiology and Microbiology

Email: nlbelkova@gmail.com
ORCID iD: 0000-0001-9720-068X
SPIN-code: 6533-3698

PhD in Biology, Associate Professor

Россия, Irkutsk

References

  1. Маркова Ю.А., Анганова Е.В., Турская А.Л., и др. Регуляция формирования биопленок Escherichia coli (обзор) // Прикладная биохимия и микробиология. — 2018. — Т. 54. — № 1. — С. 3–15. [Markova JA, Anganova EV, Turskaya AL, et al. Regulation of Escherichia coli biofilm formation (review). Applied Biochemistry and Microbiology. 2018;54(1):3–15. (In Russ.)] doi: https://doi.org/10.7868/S0555109918010014
  2. Wolcott R, Dowd S. The role of biofilms: are we hitting the right target? Plast Reconstr Surg. 2011;127(Suppl 1):28S–35S. doi: https://doi.org/10.1097/PRS.0b013e3181fca244
  3. Sen CK, Roy S, Mathew-Steiner SS, et al. Biofilm Management in Wound Care. Plast Reconstr Surg. 2021;148(2):275e–288e. doi: https://doi.org/10.1097/PRS.0000000000008142
  4. Савилов Е.Д., Колесников С.И., Брико Н.И. Коморбидность в эпидемиологии — новый тренд в исследованиях общественного здоровья // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2016. — Т. 93. — № 4. — С. 66–75. [Savilov ED, Kolesnikov SI, Briko NI. The comorbidity in epidemiology — new trend in public health research. Zh. Microbiol. 2016;93(4):66–75. (In Russ.)] doi: https://doi.org/10.36233/0372-9311-2016-4-66-75
  5. Pai L, Patil S, Liu S, et al. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol. 2023;13:1327069. doi: https://doi.org/10.3389/fcimb.2023.1327069
  6. Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286–5298. doi: https://doi.org/10.3390/molecules20045286
  7. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: https://doi.org/10.1038/nrmicro2415
  8. Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–1128. doi: https://doi.org/10.1111/j.1365-2958.2005.05008.x
  9. Conrad A, Suutari MK, Keinänen MM, et al. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids. 2003;38(10):1093–1105. doi: https://doi.org/10.1007/s11745-006-1165-y
  10. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543. doi: https://doi.org/10.1128/MMBR.00013-14
  11. Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–2473. doi: https://doi.org/10.1128/AAC.49.6.2467-2473.2005
  12. Yang L, Hu Y, Liu Y, et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol. 2011;13(7):1705–1717. doi: https://doi.org/10.1111/j.1462-2920.2011.02503.x
  13. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4(11):e1000213. doi: https://doi.org/10.1371/journal.ppat.1000213
  14. Chiang WC, Nilsson M, Jensen PØ, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57(5):2352–2361. doi: https://doi.org/10.1128/AAC.00001-13
  15. Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology (Reading). 2007;153(Pt 12):3923–3938. doi: https://doi.org/10.1099/mic.0.2007/012856-0
  16. Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel). 2023;12(12):1694. doi: https://doi.org/10.3390/antibiotics12121694
  17. Wang X, Liu M, Yu C, et al. Biofilm formation: mechanistic insights and therapeutic targets. Mol Biomed. 2023;4(1):49. doi: https://doi.org/10.1186/s43556-023-00164-w
  18. Zhou L, Zhang Y, Ge Y, et al. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front Microbiol. 2020;11:589640. doi: https://doi.org/10.3389/fmicb.2020.589640
  19. Bridier A, Dubois-Brissonnet F, Boubetra A, et al. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods. 2010;82(1):64–70. doi: https://doi.org/10.1016/j.mimet.2010.04.006
  20. Arenas J, Nijland R, Rodriguez FJ, et al. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol. 2013;87(2):254–268. doi: https://doi.org/10.1111/mmi.12097
  21. Ситникова К.О., Немченко У.М., Воропаева Н.М., и др. Динамика образования биопленок клинически значимыми штаммами условно-патогенных бактерий // Acta Biomedica Scientifica. — 2022. — Т. 7. — № 5–1. — С. 119–128. [Sitnikova KO, Nemchenko UM, Voropaeva NM, et al. The effectiveness of biofilm formation of daily cultures of clinically significant strains of opportunistic bacteria. Acta Biomedica Scientifica. 2022;7(5–1):119–128. (In Russ.)] doi: https://doi.org/10.29413/ABS.2022-7.5-1.13
  22. Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi: https://doi.org/10.1038/nrmicro.2016.94
  23. Beebout CJ, Eberly AR, Werby SH, et al. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. mBio. 2019;10(2):e02400-18. doi: https://doi.org/10.1128/mBio.02400-18
  24. Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14(9):589–600. doi: https://doi.org/10.1038/nrmicro.2016.84
  25. Stewart PS, Zhang T, Xu R, et al. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes. 2016;2:16012. doi: https://doi.org/10.1038/npjbiofilms.2016.12
  26. Walters MC 3rd, Roe F, Bugnicourt A, et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–323. doi: https://doi.org/10.1128/AAC.47.1.317-323.2003
  27. Levin BR, Rozen DE. Non-inherited antibiotic resistance. Nat Rev Microbiol. 2006;4(7):556–562. doi: https://doi.org/10.1038/nrmicro1445
  28. Chung HS, Yao Z, Goehring NW, et al. Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci U S A. 2009;106(51):21872–21877. doi: https://doi.org/10.1073/pnas.0911674106
  29. Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 2011;35(5):768–789. doi: https://doi.org/10.1111/j.1574-6976.2011.00282.x
  30. Waters EM, Rowe SE, O’Gara JP, et al. Convergence of Staphylococcus aureus Persister and Biofilm Research: Can Biofilms Be Defined as Communities of Adherent Persister Cells? PLoS Pathog. 2016;12(12):e1006012. doi: https://doi.org/10.1371/journal.ppat.1006012
  31. Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm. 2020;2:100018. doi: https://doi.org/10.1016/j.bioflm.2019.100018
  32. Barraud N, Buson A, Jarolimek W, et al. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One. 2013;8(12):e84220. doi: https://doi.org/10.1371/journal.pone.0084220
  33. Meylan S? Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24(2):195–206. doi: https://doi.org/10.1016/j.chembiol.2016.12.015
  34. Серегина Т.А., Лобанов К.В., Шакулов Р.С., и др. Повышение бактерицидного эффекта антибиотиков путем ингибирования ферментов, вовлеченных в генерацию сероводорода у бактерий // Молекулярная биология. — 2022. — Т. 56. — № 5. — С 697–709. [Seregina TA, Lobanov KV, Shakulov RS, et al. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol (Mosk). 2022;56(5):697–709. (In Russ.)] doi: https://doi.org/10.31857/S0026898422050123
  35. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–454. doi: https://doi.org/10.1038/nrmicro3032
  36. Southam CM, Ehrlich J. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology. 1943;33:517–524.
  37. Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021;19(2):123–132. doi: https://doi.org/10.1038/s41579-020-00443-1
  38. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–122. doi: https://doi.org/10.1038/nrd1008
  39. Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. mBio. 2020;11(3):e00817–20. doi: https://doi.org/10.1128/mBio.00817-20
  40. Kusser W, Ishiguro EE. Suppression of mutations conferring penicillin tolerance by interference with the stringent control mechanism of Escherichia coli. J Bacteriol. 1987;169(9):4396–4398. doi: https://doi.org/10.1128/jb.169.9.4396-4398.1987
  41. Tuomanen E, Tomasz A. Induction of autolysis in nongrowing Escherichia coli. J Bacteriol. 1986;167(3): 1077–1080. doi: https://doi.org/10.1128/jb.167.3.1077-1080.1986
  42. Wu N, He L, Cui P, et al. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol. 2015;6:1003. doi: https://doi.org/10.3389/fmicb.2015.01003
  43. Bernier SP, Lebeaux D, DeFrancesco AS, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9(1):e1003144. doi: https://doi.org/10.1371/journal.pgen.1003144
  44. Nguyen D, Joshi-Datar A, Lepine F, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334(6058):982–986. doi: https://doi.org/10.1126/science.1211037
  45. Viducic D, Ono T, Murakami K, et al. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol. 2006;50(4):349–357. doi: https://doi.org/10.1111/j.1348-0421.2006.tb03793.x
  46. Martins D, McKay G, Sampathkumar G, et al. Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2018;115(39):9797–9802. doi: https://doi.org/10.1073/pnas.1804525115
  47. Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. Environ Mol Mutagen. 2019;60(4):368–384. doi: https://doi.org/10.1002/em.22267
  48. Jaszczur M, Bertram JG, Robinson A, et al. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry. 2016;55(16):2309–2318. doi: https://doi.org/10.1021/acs.biochem.6b00117
  49. Uruén C, Chopo-Escuin G, Tommassen J, et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1):3. doi: https://doi.org/10.3390/antibiotics10010003
  50. Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics (Basel). 2023;12(4):649. doi: https://doi.org/10.3390/antibiotics12040649
  51. Jurėnas D, Fraikin N, Goormaghtigh F, et al. Biology and evolution of bacterial toxin–antitoxin systems. Nat Rev Microbiol. 2022;20(6):335–350. doi: https://doi.org/10.1038/s41579-021-00661-1
  52. Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med. 2020; 12(549):eaaz6992. doi: https://doi.org/10.1126/scitranslmed.aaz6992
  53. Yan J, Bassler BL. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe. 2019;26(1):15–21. doi: https://doi.org/10.1016/j.chom.2019.06.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of persister formation as a result of the strict response and the SOS response

Download (252KB)

Copyright (c) 2024 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies