Фенотипические механизмы устойчивости биопленок к антибиотикам
- Авторы: Савилов Е.Д.1,2, Маркова Ю.А.3, Белькова Н.Л.1
-
Учреждения:
- Научный центр проблем здоровья семьи и репродукции человека, Институт эпидемиологии и микробиологии
- Иркутская государственная медицинская академия последипломного образования
- Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
- Выпуск: Том 79, № 4 (2024)
- Страницы: 353-359
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ФАРМАКОЛОГИИ И ФАРМАЦИИ
- Дата публикации: 10.10.2024
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/17968
- DOI: https://doi.org/10.15690/vramn17968
- ID: 17968
Цитировать
Полный текст
Доступ предоставлен
Доступ платный или только для подписчиков
Аннотация
Учитывая, что в настоящее время глобальные проблемы мирового здравоохранения — тенденция нарастания устойчивости микроорганизмов к антибиотикам и вопросы биопленочных инфекций, целью настоящего обзора стал анализ современных данных о популяционном уровне устойчивости биопленок, что объясняет их повышенную резистентность к антибиотикам. Одно из основных вводных постулатов — положение о том, что бактерии в составе биопленки обладают не только генетическими, но и фенотипическими механизмами устойчивости к антибиотикам, что обусловлено популяционным уровнем организации биопленок. В статье раскрываются основные причины фенотипической резистентности биопленок: состав матрикса, гетерогенность микробных популяций, обусловленная архитектурой биопленки, а также механизмы формирования клеток-персистеров. В заключение резюмируется актуальность рассмотрения феномена устойчивости бактериальных клеток к антибактериальным препаратам в биопленочных консорциумах в отношении инфекционных агентов для детального осмысления рассматриваемого вопроса и формирования соответствующих программ в клинических и профилактических направлениях медицинской науки.
Ключевые слова
Полный текст
Об авторах
Евгений Дмитриевич Савилов
Научный центр проблем здоровья семьи и репродукции человека, Институт эпидемиологии и микробиологии; Иркутская государственная медицинская академия последипломного образования
Автор, ответственный за переписку.
Email: savilov47@gmail.com
ORCID iD: 0000-0002-9217-6876
SPIN-код: 1057-7837
д.м.н., профессор
Россия, Иркутск; ИркутскЮлия Александровна Маркова
Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Email: juliam06@mail.ru
ORCID iD: 0000-0001-7767-4204
SPIN-код: 9983-0764
д.б.н.
Россия, ИркутскНаталья Леонидовна Белькова
Научный центр проблем здоровья семьи и репродукции человека, Институт эпидемиологии и микробиологии
Email: nlbelkova@gmail.com
ORCID iD: 0000-0001-9720-068X
SPIN-код: 6533-3698
к.б.н., доцент
Россия, ИркутскСписок литературы
- Маркова Ю.А., Анганова Е.В., Турская А.Л., и др. Регуляция формирования биопленок Escherichia coli (обзор) // Прикладная биохимия и микробиология. — 2018. — Т. 54. — № 1. — С. 3–15. [Markova JA, Anganova EV, Turskaya AL, et al. Regulation of Escherichia coli biofilm formation (review). Applied Biochemistry and Microbiology. 2018;54(1):3–15. (In Russ.)] doi: https://doi.org/10.7868/S0555109918010014
- Wolcott R, Dowd S. The role of biofilms: are we hitting the right target? Plast Reconstr Surg. 2011;127(Suppl 1):28S–35S. doi: https://doi.org/10.1097/PRS.0b013e3181fca244
- Sen CK, Roy S, Mathew-Steiner SS, et al. Biofilm Management in Wound Care. Plast Reconstr Surg. 2021;148(2):275e–288e. doi: https://doi.org/10.1097/PRS.0000000000008142
- Савилов Е.Д., Колесников С.И., Брико Н.И. Коморбидность в эпидемиологии — новый тренд в исследованиях общественного здоровья // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2016. — Т. 93. — № 4. — С. 66–75. [Savilov ED, Kolesnikov SI, Briko NI. The comorbidity in epidemiology — new trend in public health research. Zh. Microbiol. 2016;93(4):66–75. (In Russ.)] doi: https://doi.org/10.36233/0372-9311-2016-4-66-75
- Pai L, Patil S, Liu S, et al. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol. 2023;13:1327069. doi: https://doi.org/10.3389/fcimb.2023.1327069
- Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286–5298. doi: https://doi.org/10.3390/molecules20045286
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: https://doi.org/10.1038/nrmicro2415
- Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–1128. doi: https://doi.org/10.1111/j.1365-2958.2005.05008.x
- Conrad A, Suutari MK, Keinänen MM, et al. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids. 2003;38(10):1093–1105. doi: https://doi.org/10.1007/s11745-006-1165-y
- Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543. doi: https://doi.org/10.1128/MMBR.00013-14
- Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–2473. doi: https://doi.org/10.1128/AAC.49.6.2467-2473.2005
- Yang L, Hu Y, Liu Y, et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol. 2011;13(7):1705–1717. doi: https://doi.org/10.1111/j.1462-2920.2011.02503.x
- Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4(11):e1000213. doi: https://doi.org/10.1371/journal.ppat.1000213
- Chiang WC, Nilsson M, Jensen PØ, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57(5):2352–2361. doi: https://doi.org/10.1128/AAC.00001-13
- Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology (Reading). 2007;153(Pt 12):3923–3938. doi: https://doi.org/10.1099/mic.0.2007/012856-0
- Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel). 2023;12(12):1694. doi: https://doi.org/10.3390/antibiotics12121694
- Wang X, Liu M, Yu C, et al. Biofilm formation: mechanistic insights and therapeutic targets. Mol Biomed. 2023;4(1):49. doi: https://doi.org/10.1186/s43556-023-00164-w
- Zhou L, Zhang Y, Ge Y, et al. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front Microbiol. 2020;11:589640. doi: https://doi.org/10.3389/fmicb.2020.589640
- Bridier A, Dubois-Brissonnet F, Boubetra A, et al. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods. 2010;82(1):64–70. doi: https://doi.org/10.1016/j.mimet.2010.04.006
- Arenas J, Nijland R, Rodriguez FJ, et al. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol. 2013;87(2):254–268. doi: https://doi.org/10.1111/mmi.12097
- Ситникова К.О., Немченко У.М., Воропаева Н.М., и др. Динамика образования биопленок клинически значимыми штаммами условно-патогенных бактерий // Acta Biomedica Scientifica. — 2022. — Т. 7. — № 5–1. — С. 119–128. [Sitnikova KO, Nemchenko UM, Voropaeva NM, et al. The effectiveness of biofilm formation of daily cultures of clinically significant strains of opportunistic bacteria. Acta Biomedica Scientifica. 2022;7(5–1):119–128. (In Russ.)] doi: https://doi.org/10.29413/ABS.2022-7.5-1.13
- Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi: https://doi.org/10.1038/nrmicro.2016.94
- Beebout CJ, Eberly AR, Werby SH, et al. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. mBio. 2019;10(2):e02400-18. doi: https://doi.org/10.1128/mBio.02400-18
- Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14(9):589–600. doi: https://doi.org/10.1038/nrmicro.2016.84
- Stewart PS, Zhang T, Xu R, et al. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes. 2016;2:16012. doi: https://doi.org/10.1038/npjbiofilms.2016.12
- Walters MC 3rd, Roe F, Bugnicourt A, et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–323. doi: https://doi.org/10.1128/AAC.47.1.317-323.2003
- Levin BR, Rozen DE. Non-inherited antibiotic resistance. Nat Rev Microbiol. 2006;4(7):556–562. doi: https://doi.org/10.1038/nrmicro1445
- Chung HS, Yao Z, Goehring NW, et al. Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci U S A. 2009;106(51):21872–21877. doi: https://doi.org/10.1073/pnas.0911674106
- Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 2011;35(5):768–789. doi: https://doi.org/10.1111/j.1574-6976.2011.00282.x
- Waters EM, Rowe SE, O’Gara JP, et al. Convergence of Staphylococcus aureus Persister and Biofilm Research: Can Biofilms Be Defined as Communities of Adherent Persister Cells? PLoS Pathog. 2016;12(12):e1006012. doi: https://doi.org/10.1371/journal.ppat.1006012
- Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm. 2020;2:100018. doi: https://doi.org/10.1016/j.bioflm.2019.100018
- Barraud N, Buson A, Jarolimek W, et al. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One. 2013;8(12):e84220. doi: https://doi.org/10.1371/journal.pone.0084220
- Meylan S? Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24(2):195–206. doi: https://doi.org/10.1016/j.chembiol.2016.12.015
- Серегина Т.А., Лобанов К.В., Шакулов Р.С., и др. Повышение бактерицидного эффекта антибиотиков путем ингибирования ферментов, вовлеченных в генерацию сероводорода у бактерий // Молекулярная биология. — 2022. — Т. 56. — № 5. — С 697–709. [Seregina TA, Lobanov KV, Shakulov RS, et al. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol (Mosk). 2022;56(5):697–709. (In Russ.)] doi: https://doi.org/10.31857/S0026898422050123
- Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–454. doi: https://doi.org/10.1038/nrmicro3032
- Southam CM, Ehrlich J. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology. 1943;33:517–524.
- Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021;19(2):123–132. doi: https://doi.org/10.1038/s41579-020-00443-1
- Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–122. doi: https://doi.org/10.1038/nrd1008
- Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. mBio. 2020;11(3):e00817–20. doi: https://doi.org/10.1128/mBio.00817-20
- Kusser W, Ishiguro EE. Suppression of mutations conferring penicillin tolerance by interference with the stringent control mechanism of Escherichia coli. J Bacteriol. 1987;169(9):4396–4398. doi: https://doi.org/10.1128/jb.169.9.4396-4398.1987
- Tuomanen E, Tomasz A. Induction of autolysis in nongrowing Escherichia coli. J Bacteriol. 1986;167(3): 1077–1080. doi: https://doi.org/10.1128/jb.167.3.1077-1080.1986
- Wu N, He L, Cui P, et al. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol. 2015;6:1003. doi: https://doi.org/10.3389/fmicb.2015.01003
- Bernier SP, Lebeaux D, DeFrancesco AS, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9(1):e1003144. doi: https://doi.org/10.1371/journal.pgen.1003144
- Nguyen D, Joshi-Datar A, Lepine F, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334(6058):982–986. doi: https://doi.org/10.1126/science.1211037
- Viducic D, Ono T, Murakami K, et al. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol. 2006;50(4):349–357. doi: https://doi.org/10.1111/j.1348-0421.2006.tb03793.x
- Martins D, McKay G, Sampathkumar G, et al. Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2018;115(39):9797–9802. doi: https://doi.org/10.1073/pnas.1804525115
- Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. Environ Mol Mutagen. 2019;60(4):368–384. doi: https://doi.org/10.1002/em.22267
- Jaszczur M, Bertram JG, Robinson A, et al. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry. 2016;55(16):2309–2318. doi: https://doi.org/10.1021/acs.biochem.6b00117
- Uruén C, Chopo-Escuin G, Tommassen J, et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1):3. doi: https://doi.org/10.3390/antibiotics10010003
- Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics (Basel). 2023;12(4):649. doi: https://doi.org/10.3390/antibiotics12040649
- Jurėnas D, Fraikin N, Goormaghtigh F, et al. Biology and evolution of bacterial toxin–antitoxin systems. Nat Rev Microbiol. 2022;20(6):335–350. doi: https://doi.org/10.1038/s41579-021-00661-1
- Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med. 2020; 12(549):eaaz6992. doi: https://doi.org/10.1126/scitranslmed.aaz6992
- Yan J, Bassler BL. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe. 2019;26(1):15–21. doi: https://doi.org/10.1016/j.chom.2019.06.002