Cover Page

Cite item


Review examines the autonomic regulation of thyroid function. Review examines the issues of autonomic regulation of the thyroid gland. Activation of the central α-adrenergic mechanisms increases the release of thyroid-stimulating hormone of pituitary mainly due to the stimulation of its secretion. Dopamine inhibits the secretion of this hormone, acting on D2-receptors tireotropotsitov. Acetylcholine and other cholinomimetics inhibit the functional activity of thyrociteы with the participation of muscarinic receptors. Along the sympathetic and parasympathetic special attention paid to the role of the serotonergic division of vegetative system. Serotonin can inhibit the secretion of thyrotropin by the pituitary gland, but has a direct stimulatory effect on thyrocytes. This stimulatory effect is mediated by the serotonin 5-HT2 receptors. In hypothyroidism synthesis and metabolism of serotonin in the brain are slowed down. Depression is accompanied by inhibition of the enzyme activity deiodinase type 2, thereby reducing the concentration of serotonin. Activation of 5-HT1 receptor lead to increased levels of intracellular calcium, causing inhibition of the promoter of calcitonin gene-associated peptide.


About the authors

A. E. Lychkova

Central Gastroenterology Research Institute, Moscow, Russian Federation

Author for correspondence.
PhD, Head of the Clinical Physiology Laboratory, Central Research Institute of Gastroenterology Department of Moscow Public Health Address: 129343, Moscow, Entuziastov highway, 86; tel.: (499) 180-41-12 Russian Federation


  1. Magner J.A. Thyroid-stimulating hormone: biosynthesis, cell biology and bioactivity. Endocr. Rev. 1990; 11 (2): 354–385.
  2. Sapronov N.S., Fedotova Yu.O. Gormony gipotalamo–gipofizarno–tireoidnoi sistemy i mozg [The hormones of the hypothalamic-pituitary-thyroid system and the brain]. St. Petersburg, Lan', 2002. 184 p.
  3. Fedotova Yu.O., Sapronov N.S. Effekty tireoidnykh gormonov v tsentral'noi nervnoi sisteme. Osnovy neiroendokrinologii. Pod red. V.G. Shalyapina, P.D. Shabanova [Effects of thyroid hormones in the central nervous system. In: Fundamentals Neuroendocrinology.V.G. Shalyapin, P.D. Shabanov (edtors)]. St. Petersburg, Elbi-SPb, 2005. p. 204–249.
  4. Klieverik L., Kalsbeek A., Fliers E. Autonomic innervation of the rhyroid gland and its functional implications. Hot Thyroidology. 2005; 1:3-4.
  5. Sundler F., Grunditz T., Hakanson R., Uddman R. Innervation of the thyroid. A study of the rat using retrograde tracing and immunohistochemistry. Acta Histochem. 1989; Suppl. Band XXXVII: 191–198.
  6. Munoz–Cruzado Poce M.J., Garcia Navas A.J., Moreno Gomez M.L. Prevalence of thyroid disorders in patients diagnosed with depression. Aten. Primaria. 2000; 26 (3): 176–179.
  7. Dedov I.I., Balabolkin M.I., Marova E.I. Bolezni organov endokrinnoi sistemy [Diseases of organs of the endocrine system]. Мoscow, Meditsina, 2000. 568 p.
  8. Michalkiewicz M., Dey M., Huffman L., Hedge G.A. The neuropeptides, VIP and NPY, that are present in the thyroid nerves are not released into the thyroid vein. Thyroid. 1998; 8 (11): 1071–1077.
  9. Ahren B., Bengtsson H.I., Hedner P. Effects of norepinephrine on basal and thyrotropin-stimulated thyroid hormone secretion in the mouse. Endocrinology. 1986; 119 (3): 1058–1062.
  10. Young J.B., Burgi-Saville M.E., Burgi U., Landsberg L. Sympathetic nervous system activity in rat thyroid: potential role in goitrogenesis. Am. J. Physiol. Endocrinol. Metab. 2005; 288: 861–867.
  11. Maayan M.L., Volpert E.M., Debons A.F. Neurotransmitter regulation of thyroid activity. Endocr. Res.1987; 13 (2): 199–212.
  12. Rack S.K., Makela E.H. Hypothyroidism and depression: a therapeutic challenge. Ann. Pharmacother. 2000; 34 (10): 1142–1145.
  13. Gur E., Lifschytz T., Lerer B., Newman M.E. Effects of triiodothyronine and imipramine on basal 5-HT levels and 5-HT(1) autoreceptor activity in rat cortex. Eur. J. Pharmacol. 2002; 457 (1): 37–43.
  14. Dey M., Michalkiewicz M., Huffman L.J., Hedge G.A. Thyroidal vascular responsiveness to parasympathetic stimulation is increased in hyperthyroidism. Am. J. Physiol. 1993; 264 (3 Pt. 1): 398–402.
  15. Dey M., Michalkiewicz M., Dey M., Hedge G.A. NPY is not a primary regulator of the acute thyroid blood flow respons to sympathetic nerve stimulation. Am. J. Physiol. 1993; 265: 24–30.
  16. Pietrzyk Z., Michalkiewicz M., Huffman L.J., Hedge G.A. Vasoactive intestinal peptide enhances thyroidal iodide uptake during dietary iodine deficiency. Endocr. Res. 1992; 18 (3): 213–228.
  17. Michalkiewicz M., Huffman L.J., Dey M., Hedge G.A. Immunization against vasoactive intestinal peptide does not affect thyroid hormone secretion or thyroid blood flow. Am. J. Physiol. 1994; 266: 905–913.
  18. Consolo S., Garattini S., Ghielmetti R. Morselli P., Valzelli L. The hydroxylation of tryptophan in vivo by brain. Life Sci. 1965; 4: 625–630.
  19. Reiter R.J. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp. Gerontol. 1995; 30 (3–4): 199–212.
  20. Vinogradov S.Yu., Pogorelov Yu.V. Neuromediator bioamines of the thyroid gland and structuro-functional aspects of its homeostasis. Arkhiv anatomii, gistologii i embriologii = Archives of Anatomy, Histology and Embryology. 1987; 1: 12–22.
  21. Gershon M.D., Belshaw B.E., Nunez E.A. Biochemical, histochemical and ultrastructural studies of thyroid serotonin, parafollicular and follicular cells during development in the dog. Am. J. Anat. 2005; 132 (1): 5–19.
  22. Brizzi G., Carella C., Foglia M.C., Frigino M. Thyroid hormone plasmatic levels in rats treated with serotonin in acute and chronic way. J. Physiol. Paris. 1997; 91 (6): 307–310.
  23. Broedel O., Eravci M., Fuxius S., Smolarz T., Jeitner A., Grau H., Stoltenburg-Didinger G., Plueckhan H, Meinhold H, Baumgartner A.. Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain. Am. J. Physiol. Endocrinol. Metab. 2003; 285 (3): 470–480.
  24. Raikhlin N.T., Kvetnoi I.M. Diffuznaya endokrinnaya sistema (APUD-sistema) [Diffuse endocrine system (APUD-system)]. Мoscow, Meditsina, 1992.
  25. Тejani-Butt S.M., Yang J., Kaviani A. Time course of altered thyroid states on 5-НТ1A receptors and 5-НТ uptake sites in rat brain: An autoradiographic analysis. Neuroendocrinology. 1993; 57: 1011–1018.
  26. Heal D.J., Smith S.L. The effects of acute and repeated administration of T3 to mice on 5-НТ1 and 5-НТ2 function in the brain and its influence on the actions of repeated eletroconvulsive shock. Neuropharmacol. 1998; 27: 1239–1248.
  27. Haas M.J., Mreyoud A., Fishman M., Mooradian A.D. Microarray analysis of thyroid hormone-induced changes in mRNA expression in the adult rat brain. Neurosci. Lett. 2004; 365 (1):14–18.
  28. Salvatore D., Low S.C., Berry M. Maia A.L., Harney J.W., Croteau W., St Germain D.L., Larsen P.R. Type 3 iodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J. Clin. Invest. 1995; 96: 2421–2430.
  29. Crocker A.D., Overstreet D.H., Crocker J.M. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration. Pharmacol. Biochem. Behav. 1986; 24 (6): 1593–1597.
  30. Larisch R., Kley K., Nikolaus S., Franz M,, Hautzel H., Tress W., Müller H.W. Depression and anxiety in different thyroid function states. Horm. Metab. Res. 2004; 36 (9): 650–653.
  31. Campos-Barros A., Meinhold H., Stula M., Müller F., Köhler R., Eravci M., Putzien O., Baumgartner A. The influence of desipramine on thyroid hormone metabolism in rat brain. J. Pharmacol. Exp. Therapeut. 1994; 268: 1143–1152.
  32. Baumgartner A., Dubeyko M., Campos-Barros A. Eravci M, Meinhold H. Subchronic administration on fluoxetine to rats affects triiodothyronine production and deiodination in regions of the cortex and in the limbic forebrain. Brain Res. 1994; 635: 68–74.
  33. Hein M.D., Jackson I.M.D. Review: Thyroid Function in Psychiatric Illness. Gen. Hosp. Psychiatry. 1990; 12: 232–244.
  34. Kirkegaard C. The thyrotropin response to thyrotropin-releasing hormone in endogenous depression. Psychoneuroendocrinol. 1981; 6: 189–212.
  35. Gnilorybov M. Neuropeptides and neurogenic mechanisms of arthritis. Ukrainskii revmatologicheskii zhurnal = Ukrainian Journal of Rheumatology. 2004; 2: 8–16.
  36. Zabel M., Dietel M., Gebarowska E., Michael R. Effect of follicular cells on calcitonin gene expression in thyroid parafollicular cells in cell culture. Histochem J. 1999; 31 (3): 175–180.
  37. Naot D., Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 2008; 43 (5): 813–818.
  38. Falck B, Owman C. 5-hydroxytryptamine and related amines in endocrine cell systems. Adv. Pharmacol. 1968; 6 (Pt. A): 211–231.
  39. Moskowitz M.A. Neurogenic versus vascular mechanism of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol. Sci. 1992; 13: 307–311.
  40. Durham P., Russo A. Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. J .Neurosci. 2003; 23 (3): 807–815.
  41. Russo A.F., Clark M.S., Durham P.L. Thyroid parafollicular cells. An accessible model for the study of serotonergic neurons. Mol. Neurobiol. 1996; 13 (3): 257–276.
  42. Yoshimura M., Furue H., Ito A. Anti-nociceptive effect of calcitonin on chronic pain associated with osteoporosis. Clin. Calcium. 2001; 11 (9): 1153–1157.
  43. Lychkova A.E., Petrakov A.V., Khomeriki S.G. Modeling osteoporosis. Vestnik Rossiiskoi akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2010; 4: 31–33.
  44. Tamir H., Hsiung S.C., Yu P.Y., Liu K.P., Adlersberg M., Nunez E.A., Gershon M.D. Serotonergic signalling between thyroid cells: protein kinase C and 5-HT2 receptors in the secretion and action of serotonin. Synapse. 1992; 12 (2): 155–168.
  45. Lychkova A.E. Serotonergic nervous system: gradients of neural influences in normal and pathological. Eksperimental'naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2003; 6: 114–120.
  46. Lychkova A.E. Mechanisms of synergic action of vegetative nervous system compartments. Uspekhi fiziologicheskikh nauk zhurnal = Success of Physiological Sciences. 2006; 37 (1): 50–67.

Copyright (c) 1970 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies