Method of Selecting Surgical Treatment for Children with Congenital Deformity of the Spine and Thorax

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Spinal anomalies are considered to be the most severe pathology of the axial skeleton. Intrauterine formation of deformity with its subsequent progression during growth is the reason for the need for surgical intervention. The prevalence of patients with congenital scoliosis in the total structure of spinal deformities is up to 2%. In terms of the malignancy of the course of the disease, children with unsegmented rod and rib synostosis represent one of the most unfavorable groups of patients. Aim. To perform a comparative analysis of the results of surgical treatment of children with congenital scoliosis with unilateral lateral vertebral segmentation disorder and rib synostosis using different techniques. Methods. The work is a monocenter cohort study of “case-control” type (III level of evidence). The design of the work is a monocenter cohort retro and prospective study. The results of surgical treatment of patients between 2010 and 2020 were analyzed. The study included 45 patients aged 3 to 7 years with the diagnosis of congenital scoliosis with unilateral lateral segmentation disorder of vertebral bodies and rib synostosis. The patients were divided into 2 groups depending on the surgical treatment method applied. In the first group (n = 24), patients underwent thoracoplasty with implantation of an individual rib/rib/vertebral distractor; in the second group (n = 21), patients underwent spinal surgery in the scope of vertebrotomy at the apex of the curvature and correction of the deformity with a multifocal spinal system. The data of medical records, as well as MSCT, radiographs, and pulse oscillometry were included in the analysis of the results. Results. Me (median) of scoliosis before treatment in group 1 patients 58.5, IQR = 19.75; after treatment — Me = 40.0, IQR = 20.0. Me of kyphosis before surgery 22, IQR = 4.5; after surgery Me = 26.0, IQR = 4.0. In the second group, Me of scoliosis before treatment 58.0, IQR = 3.0; after treatment, Me = 20.0, IQR = 6.0. Me of kyphosis before surgery 22, IQR = 2.0; after surgery Me 28.0, IQR = 4.0. When comparing MSCT data, group 1 patients showed an increase in lung tissue volume by 21% of the initial lung volume, in group 2 the increase amounted to 27%. The analysis of external respiratory function indices demonstrates improvement of reactive component indices by 21.1%, frequency dependence of resistive component by 46.4%, resistive component by 50% in group 1 patients, in group 2 there is an improvement of reactive component indices by 21.1%, resistive component by 50.9% and frequency dependence of reactive component by 46.7%. Conclusion. Corrective intervention on the spine at an early age makes it possible to achieve effective correction of the deformity; similar changes are observed both in lung volume and functional state of the respiratory system due to the mediated correction of the thorax shape.

Full Text

Restricted Access

About the authors

Sergey V. Vissarionov

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Author for correspondence.
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, Saint Petersburg

Marat S. Asadulaev

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402

MD, PhD

Russian Federation, Saint Petersburg

Anton S. Shabunin

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
Russian Federation, Saint Petersburg

Kristina N. Rodionova

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
Russian Federation, Saint Petersburg

Elena A. Orlova

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: eaorlova@mail.ru
ORCID iD: 0000-0002-3128-980X

MD, PhD

Russian Federation, Saint Petersburg

Yury A. Novosad

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
Russian Federation, Saint Petersburg

Polina A. Pershina

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
Russian Federation, Saint Petersburg

Timofey S. Rybinskikh

National Medical Research Center of Pediatric Traumatology and Orthopedics named after G.I. Turner

Email: timofey1999r@gmail.com
ORCID iD: 0000-0002-4180-5353
Russian Federation, Saint Petersburg

References

  1. Kostuik JP. The history of spinal deformity. Spine Deform. 2015;3(5):417–425. doi: https://doi.org/10.1016/j.jspd.2015.07.003
  2. Abdelaal A, Munigangaiah S, Davidson N, et al. Early-onset scoliosis: challenges and current management options. Children’s Orthopedics. 2020;34(6):390398. doi: https://doi.org/10.1016/j.mporth.2020.09.009
  3. Zaki M, Choudhury B, Tsirikos AI, et al. Early-onset scoliosis: clinical presentation, assessment and treatment options. Orthopedics and Trauma. 2017;31(6):357364. doi: https://doi.org/10.1016/j.mporth.2017.09.006
  4. Ahmad AA. Early onset scoliosis and current treatment methods. J Clin Orthop Trauma. 2020;11(2):184190. doi: https://doi.org/10.1016/j.jcot.2019.12.011
  5. Larson AN, Baky FJ, St. Hilaire T, et al. Spine Deformity With Fused Ribs Treated with Proximal Rib-Versus Spine-Based Growing Constructs. Spine Deform. 2019;7(1):152157. doi: https://doi.org/10.1016/j.jspd.2018.05.011
  6. Виссарионов С.В., Асадулаев М.С., Хардиков М.А., и др. Остеотомия позвоночника в лечении детей с врожденным сколиозом при нарушении сегментации боковых поверхностей тел позвонков (предварительные результаты) // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2021. — Т. 9. — № 4.— С. 417–426. [Vissarionov SV, Asadulaev MS, Khardikov MA, et al. Spinal osteotomy for children with congenital scoliosis with unilateral unsegmented bar: Preliminary results. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(4):417–426. (In Russ.)] doi: https://doi.org/10.17816/PTORS77239
  7. Schlosser TP, Kruyt MC, Tsirikos AI. Surgical management of early-onset scoliosis: indications and currently available techniques. Orthopedics and Trauma. 2021;35(6):336337. doi: https://doi.org/10.1016/j.mporth.2021.09.004
  8. Mayer O, Campbell R, Cahill P, et al. Thracic Insufficiency Syndrome. Curr Probl Pediatr Adolesc Health Care. 2016;46(3):72–97. doi: https://doi.org/10.1016/j.cppeds.2015.11.001
  9. El-Hawary R, Morash K, Kadhim M, et al. VEPTR Treatment of Early Onset Scoliosis in Children Without Rib Abnormalities: Long-term Results of a Prospective, Multicenter Study. J.Pediatr.Orthop. 2020;40(6):406–412. doi: https://doi.org/1097/BPO.0000000000001454
  10. Campbell RM, Adcox BM, Smith MD, et al. The effect of mid-thoracic VEPTR opening wedge thoracostomy on cervical tilt associated with congenital thoracic scoliosis in patients with thoracic insufficiency syndrome. Spine (Phila Pa 1976). 2007;32(20):21712177. doi: https://doi.org/10.1097/BRS.0b013e31814b2d6c
  11. Olson JC, Kurek KC, Mehta HP, et alExpansion thoracoplasty affects lung growth and morphology in a rabbit model: A pilot study. Cl Orthop. Relat. 2011:469(5):1375–1382. doi: https://doi.org/10.1007/s11999-011-1807-0
  12. Ульрих Э.В., Мушкин А.Ю., Губин А.В. Врожденные деформации позвоночника у детей: прогноз эпидемиологии и тактика ведения // Хирургия позвоночника. — 2009. — № 2. — С. 55–61. [Ulrikh EV, Mushkin AYu, Gubin AV. Congenital spine deformities in children: epidemiological prognosis and management. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2009;2:55−61. (In Russ.)] doi: https://doi.org/10.14531/ss2009.2.55-61
  13. Capraro A, Campbell R, Hartman D, et al. Wound complication risk stratification in VEPTR surgery. Spine Deformity. 2016;4(6):446–447. doi: https://doi.org/10.1016/j.jspd.2016.09.017
  14. Smith J, Heflin J, Vitale M, et al. Mortality and Causes of Death in Patients Requiring VEPTR Surgery. Global Spine Journal. 2016;6(1suppl):s-0036-1582989-s-0036-1582989. doi: https://doi.org/10.1055/s-0036-1582989
  15. Виссарионов С.В., Асадулаев М.С., Орлова Е.А., и др. Оценка эффективности лечения детей с врожденным сколиозом при несегментированном стержне и синостозе ребер // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2022. — Т. 10. — № 3. — С. 211–221. [Vissarionov SV, Asadulaev MS, Orlova EA, et al. Assessment of the efficacy of treatment for children with congenital scoliosis with unsegmented bar and rib synostosis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(3):211–221. (In Russ.)] doi: https://doi.org/10.17816/PTORS109182
  16. Володич О.С. Импульсная осциллометрия в комплексной диагностике вентиляционных нарушений у больных туберкулезом легких: дис. канд. мед. наук. — СПб., 2021. — 163 с. [Volodich OS. Pulse oscillometry in the complex diagnostics of the respiratory tract in patients with pulmonary tuberculosis: PHD thesis. St. Petersburg; 2021. 163 p. (In Russ.)]
  17. Ozdemir A. Predictive value of serum neutrophil-to-lymphocyte ratio in bronchopulmonary dysplasia: A retrospective observational study. Ann Med Res. 2018;25(4):512–517. doi: https://doi.org/10.5455/annalsmedres.2018.07.134
  18. Akesen B, Ulusaloğlu AC, Atici T, et al. Magnetically controlled growing rod in 13 patients with early-onset scoliosis and spinal improvement. Acta Orthop Traumatol Turc. 2018;52(6):438–441. doi: https://doi.org/10.1016/j.aott.2017.12.004
  19. Wijdicks SPJ, Tromp IN, Yazici M, et al. A comparison of growth among growth-friendly systems for scoliosis: a systematic review. Spine J. 2019;19(5):789–799. doi: https://doi.org/10.1016/j.spinee.2018.08.017
  20. Konieczny MR, Ehrlich AK, Krauspe R. Vertical expandable prosthetic titanium ribs (VEPTR) in early-onset scoliosis: impact on thoracic compliance and sagittal balance. J Child. Orthop. 2017;11(1):42–48. doi: https://doi.org/10.1302/1863-2548-11-160222
  21. Wang Y, Yang F, Wang D, et al. Correlation analysis between the pulmonary function test and the radiological parameters of the main right thoracic curve in adolescent idiopathic scoliosis. J Orthop Surg Res. 2019;14(1):443. doi: https://doi.org/10.1186/s13018-019-1451-z
  22. Liu Z, Cheng Y, Hai Y, et al. Developments in congenital scoliosis and related research from 1992 to 2021: A thirty-year bibliometric Analysis. World Neurosurg. 2022;164:e24–e44. doi: https://doi.org/10.1016/j.wneu.2022.02.117
  23. Rong T, Shen J, Wang Y, et al. The Effect of Traditional Single Growing Rod Technique on the Growth of Unsegmented Levels in Mixed-Type Congenital Scoliosis. Global Spine J. 2022;12(5):922–930. doi: https://doi.org/10.1177/2192568220972080

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Анализ нормальности распределений показателей сколиотического и кифотического компонентов деформации у пациентов обеих групп

Download (254KB)
3. Рис. 2. Распределение локализации бокового нарушения сегментации позвонков у пациентов первой и второй групп

Download (119KB)
4. Рис. 3. Велечины сколиотического и кифотического компонентов деформации до начала лечения и после операции у пациентов пер- вой и второй групп Примечание. Здесь и далее: * p < 0,05; ** p < 0,01; *** p < 0,001; **** p < 0,0001; ns — отсутствие достоверных различий. Приведены рас- считанные в результате применения теста Манна–Уитни значения р-value.

Download (233KB)
5. Рис. 4. Объемные значения легких для пациентов первой и второй групп на основании данных МСКТ волюмометрии: А — общий объ- ем легких; Б — объем правого легкого; В — объем левого легкого

Download (272KB)
6. Рис. 5. Динамика показателей импульсной осцилометрии в процессе хирургического лечения у пациентов первой и второй групп: А — резистивный компонент; Б — реактивный компонент; В — частотная зависимость резистивного компонента

Download (269KB)
7. Рис. 6. Пациент Ф., 6 лет. Диагноз «врожденный сколиоз». А — прослеживается реберно-позвоночный дистрактор, положение пра- вильное, корректное; Б — через 2,5 мес. после выписки, на снимке обозначена область перелома стержня металлоконструкции

Download (186KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies