Paediatric amplification protocol, based on individualization of the hearing aids’ fitting parameters

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. There are no paediatric amplification clinical practice guidelines in Russia at the moment. At the same time the technological progress of hearing aids’ (HA), new algorithms and functions requires the objective evidence of safety and effectiveness for the hearing impaired children. For these reasons paediatric amplification algorithm was developed by the authors. Besides the standard procedures the algorithm includes an objective electroacoustic verification of the output parameters and separate HA functions. The research is devoted to the investigation of the protocols advantages.

Aim — development and evaluation the paediatric amplification protocol, based on objective electroacoustic verification of the output and functions of hearing aid.

Materials and Methods. Prospective, randomized, controlled clinical trial was performed. Two protocolseffectiveness were compared. Standard protocol (control group) is based on the subjective verification. Experimental protocol suggests an electroacoustic verification of the output and different HA functions: feedback cancellation, amplitude and frequency compression, microphone directionality, digital noise reduction (experimental group). Each group included 56 children (3–17 years old) with permanent hearing loss from moderate to moderately-severe degree. Initial amplification was performed for each child; the results were estimated in 1, 3 and 6 months using PEACH and LIFE questionnaires, speech audiometry and phoneme testing. DataLogging and first fitting appointment time were also estimated.

Results. In preschool-age children of the experimental group post-amplification PEACH results were 6% better than in controls. In school-age children (LIFE questionnaire) results were 11% better comparing with control group. Speech intelligibility in quiet was 3.1% (p > 0.05) higher for pre-schoolers in the experimental group and 9.3% (p < 0.01) higher for school-age children comparing with control group. Speech intelligibility in noise was higher in experimental group than in control: 7.8% (p < 0.05) in pre-schoolers and 13% (p < 0.01) for school-age children. Phoneme recognition was better in experimental group as well: 4.5% (p < 0.05) in pre-schoolers and 9.8% (p < 0.01) in school-agers than in control group. After HA fitting following an experimental protocol DataLogging time was 11–12% longer in comparison with standard procedure. On the other hand, experimental protocol took in average 1.5 hours for the first fitting and standard protocol — 53 minutes.

Conclusions. Protocol of paediatric amplification based on objective electroacoustic verification of HA output and functions allows to significantly increase the effectiveness of hearing rehabilitation in children.

Full Text

Restricted Access

About the authors

Gaziz Sh. Tufatulin

Saint Petersburg Scientific Research Institute of Ear, Throat, Nose and Speech; Center of Paediatric Audiology; North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: dr.tufatulin@mail.ru
ORCID iD: 0000-0002-6809-7764
SPIN-code: 2802-5522

MD, PhD

Russian Federation, 26/4 Esenina str., Saint Petersburg, 194356; Saint Petersburg; Saint Petersburg

Yuri K. Yanov

North-Western State Medical University named after I.I. Mechnikov

Email: 9153764@mail.ru
ORCID iD: 0000-0001-9195-128X
SPIN-code: 4406-5143

MD, PhD, Professor, Academician of the RAS

Russian Federation, Saint Petersburg

Sergei A. Artyushkin

Saint Petersburg Scientific Research Institute of Ear, Throat, Nose and Speech

Email: sergei.artyushkin@szgmu.ru
ORCID iD: 0000-0003-4482-6157
SPIN-code: 5140-4055

MD, PhD, Professor

Russian Federation, 26/4 Esenina str., Saint Petersburg, 194356

Vladimir V. Dvoryanchikov

Saint Petersburg Scientific Research Institute of Ear, Throat, Nose and Speech; North-Western State Medical University named after I.I. Mechnikov

Email: 3162256@mail.ru
ORCID iD: 0000-0002-0925-7596
SPIN-code: 3538-2406

MD, PhD, Professor

Russian Federation, 26/4 Esenina str., Saint Petersburg, 194356; Saint Petersburg

References

  1. Carney A, Moeller MP. Treatment efficacy: Hearing loss in children. J. Speech Lang Hear Res. 1998;41(1):61–84. doi: https://doi.org/10.1044/jslhr.4101.s61
  2. Загорянская М.Е., Румянцева М.Г. Возможности своевременной ранней реабилитации детей с нарушениями слуха // Российская оториноларингология. — 2008. — № S1. — С. 257–261. [Zagoryanskaya ME, Rumyantseva MG. Vozmozhnosti svoevremennoi rannei reabilitatsii detei s narusheniyami sluha. Rossiiskaya otorinolaringologiya. 2008;(S1):257–261. (In Russ.)]
  3. Королева И.В. Диагностика и коррекция нарушений слуховой функции у детей раннего возраста. СПб.: Издательство КАРО; 2005. [Koroleva IV. Diagnostika i korrektsiya narusheniy sluhovoi funktsii u detei. St. Petersburg: KARO; 2005. (In Russ).]
  4. Королева И.В. Основы аудиологии и слухопротезирования. СПб.: Каро; 2022. [Koroleva IV. Osnovy audiologii i slukhoprotezirovaniya. St. Petersburg: KARO; 2022. (In Russ).]
  5. Yoshinaga-Itana C, Couter D, Thomson V. Developmental outcomes of children with hearing loss born in Colorado hospitals with and without universal newborn hearing screening programs. Semin Neonatol. 2008;6(6):521–529. doi: https://doi.org/10.1053/siny.2001.0075
  6. Ching TY, Dillon H, Marnane V, et al. Outcomes of early- and late-identified children at 3 years of age: findings from a prospective population-based study. Ear Hear. 2013;34(5):535–552. doi: https://doi.org/10.1097/AUD.0b013e3182857718
  7. Ontario Infant Hearing Program. Protocol for the provision of amplification. Version 2019.01. Ontario: Ontario Ministry of Children, Community and Social Services; 2019. 98 p.
  8. Joint Committee on Infant Hearing. Year 2019 position statement: Principles and guidelines for early hearing detection and intervention programs. J Early Hear Detect Intervent. 2019;4(2):1–44.
  9. Ching TY, Dillon H, Leigh G, Cupples L. Learning from the Longitudinal Outcomes of Children with Hearing Impairment (LOCHI) study: summary of 5-year findings and implications. Int J Audiol. 2018;57(sup2):S105–S111. doi: https://doi.org/10.1080/14992027.2017.1385865
  10. Tomblin JB, Harrison M, Ambrose SE, et al. Language outcomes in young children with mild to severe hearing loss. Ear Hear. 2015;36 Suppl (0 1):76S–91S. doi: https://doi.org/10.1097/AUD.0000000000000219
  11. World Report on Hearing. In: World Health Organization: Official website. 3 March 2021. Available online: https://www.who.int/publications/i/item/world-report-on-hearing. Accessed on July 6, 2023.
  12. McCreery RW, Venediktov RA, Coleman JJ, Leech HM. An evidence-based systematic review of directional microphones and digital noise reduction hearing aids in school-age children with hearing loss. Am J Audiol. 2012;21(2):295–312. doi: https://doi.org/10.1044/1059-0889(2012/12-0014)
  13. Ching TY, O’Brien A, Dillon H, et al. Directional effects on infants and young children in real life: Implications for amplification. J Speech Lang Hear Res. 2009;52(5):1241–1254. doi: https://doi.org/10.1044/1092-4388(2009/08-0261)
  14. Gou J, Valero J, Marcoux A. The effect of non-linear amplification and low compression threshold on receptive and expressive speech ability in children with severe to profound hearing loss. J Educ Audiol. 2002;10:1–14.
  15. McCreery RW, Walker EA. Pediatric amplification. Enhancing Auditory Access. San Diego, CA: Plural Publishing; 2017.
  16. Pittman AL, Stelmachowicz PG, Lewis DE, Hoover BM. Spectral characteristics of speech at the ear: implications for amplification in children. J Speech Lang Hear Res. 2003;46(3):649–657. doi: 10.1044/1092-4388(2003/051)
  17. McCreery RW, Bentler RA, Roush PA. The characteristics of hearing aid fittings in infants and young children. Ear Hear. 2013;34(6):701–710. doi: https://doi.org/10.1097/AUD.0b013e31828f1033
  18. Туфатулин Г.Ш., Чинг Т., Савельева Е.Е., Савельев Е.С. Русскоязычная версия опросника PEACH (валидация и нормативные данные) // Вестник оториноларингологии. — 2021. — Т. 86. — № 2. — С. 10–15. [Tufatulin GSh, Ching T, Savelieva EE, Saveliev ES. Russian version of PEACH scale (validation and normative data). Vestnik Oto-Rino-Laringologii. 2021;86(2):10-15. (In Russ.)] doi: https://doi.org/10.17116/otorino20218602110
  19. Anderson K, Smaldino J. Listening inventories for education: a classroom measurement tool. The Hearing Journal. 1999;52:74–76. doi: https://doi.org/10.1097/00025572-199910000-00009
  20. Seewald R, Moodie S, Scollie S, Bagatto M. The DSL method for pediatric hearing instrument fitting: historical perspective and current issues. Trends Amplif. 2005;9(4):145–157. doi: https://doi.org/10.1177/108471380500900402
  21. Feirn R. Guidelines for Fitting Hearing Aids to Young Infants. Version 2.0. 2014. 18 p.
  22. Scollie S, Levy C, Pourmand N, et al. Fitting noise management signal processing applying the American Academy of Audiology Pediatric Amplification Guideline: Verification protocols. J Am Acad Audiol. 2016;27(3):237–251. doi: https://doi.org/10.3766/jaaa.15060
  23. Dillon H. Hearing aids. Second edition. Sydney: Boomerang press; 2012.
  24. McCreery RW, Alexander J, Brennan MA, et al. The influence of audibility on speech recognition with nonlinear frequency compression for children and adults with hearing loss. Ear Hear. 2014;35(4):440–447. doi: https://doi.org/10.1097/AUD.0000000000000027
  25. Scollie S, Glista D, Seto J, et al. Fitting frequency-lowering signal processing applying the American Academy of Audiology Pediatric Amplification Guideline: Updates and protocols. J Am Acad Audiol. 2016;27(3):219–236. doi: https://doi.org/10.3766/jaaa.15059
  26. Stelmachowicz PG, Mace AL, Kopun JG, Carney E. Long-term and short-term characteristics of speech: implications for hearing aid selection for young children. J Speech Hear Res. 1993;36(3):609–620. doi: https://doi.org/10.1044/jshr.3603.609
  27. Бобошко М.Ю., Риехакайнен Е.И. Речевая аудиометрия в клинической практике. СПб.: Диалог; 2019. [Boboshko MYu, Riehakainen EI. Rechevaya audiometriya v klinicheskoi praktike. St. Petersburg: Dialog; 2019. (In Russ).]
  28. Наумова И.В., Пашков А.В., Воеводина К.И., Фатахова М.Т. Восприятие речи и состояние порогов звуковосприятия у пациентов с кохлеарными имплантатами // Вестник оториноларингологии. – 2022. – Т. 87. – № 6. — С. 11–13. [Naumova IV, Pashkov AV, Voevodina KI, Fatakhova MT. Speech perception and the state of sound perception thresholds in patients with cochlear implants. Vestnik Oto-Rino-Laringologii. 2022;87(6):11–13. (In Russ.)] doi: https://doi.org/10.17116/otorino20228706111
  29. Гойхбург М.В., Нечаев Д.И., Бахшинян В.В., Таварткиладзе Г.А. Оценка результатов реабилитации пользователей кохлеарных имплантатов с применением психоакустических методов исследования // Вестник оториноларингологии. – 2021. – Т. 86. – № 6. – С. 10-16. [Goykhburg MV, Nechaev DI, Bakhshinyan VV, Tavartkiladze GA. Evaluation of the cochlear implantation users rehabilitation results using psychoacoustic Methods. Bulletin of Otorhinolaryngology = Vestnik otorinolaringologii. 2021;86(6):10–16. (In Russ.)] doi: https://doi.org/10.17116/otorino20218606110

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Verification of the SA in the real ear: A - position of the patient in front of the speaker (in the ear - probe-microphone and SA); B - measurement result (explanation in the text)

Download (264KB)
3. Fig.2. Digital noise reduction function verification algorithm (Scollie S. et al., 2016)

Download (307KB)
4. Fig.3. Verification of the digital noise reduction function: A - activation of the function in response to a loud speech stimulus (inadequate functioning); B - after adjusting the settings, noise reduction does not turn on in response to a loud speech stimulus; B—noise reduction is activated in response to a noise signal, gain limitation occurs primarily in the low-frequency range

Download (276KB)
5. Fig.4. The patient's position when verifying the direction of the microphone: A - front position in relation to the speaker; B - rear position

Download (242KB)
6. Fig.5. Verification of microphone direction: A – omnidirectional microphone mode; B—fixed directional mode. The solid line is the anterior position of the patient, the dotted line is the posterior position of the patient. The table at the bottom shows the digital sound pressure values (dB SPL)

Download (190KB)
7. Fig.6. Determination of the maximum audible output frequency (MAOF): 1 - target value (DSL v.5) for the ISTS input signal level of 55 dB SPL; 2 - for a level of 65 dB SPL; 3 - for a level of 75 dB SPL; 4—target saturation level (VUSD90); 5–8 - actual output of the SA in the real ear at input signal levels of 55, 65, 75 and 90 dB SPL, respectively; 9 — Ultrasound audiogram

Download (126KB)
8. Fig.7. Electroacoustic assessment of indications for frequency reduction: A - frequency reduction is indicated; B - frequency reduction is not shown. 1 — target output of SA (DSL v.5); 2 — SA response to the ISTS stimulus, 65 dB SPL; 3 — ultrasound audiogram; 4 — SA output in response to stimulus “C”. Frequency downshift disabled

Download (163KB)
9. Fig.8. Frequency Down Function Verification

Download (111KB)
10. Fig.9. Research design

Download (465KB)
11. Fig. 10. The frequency of the need to correct the default settings of the SA functions in children in the experimental group. Values are the number of cases.

Download (204KB)
12. Fig. 11. Results of the PEACH (A) and LIFE (B) questionnaires before and at various periods after hearing aid

Download (239KB)
13. Fig. 12. Results of speech audiometry in silence in SA at various periods after hearing aid

Download (430KB)
14. Fig. 13. Phoneme recognition assessment results

Download (201KB)
15. Fig. 14. Average time of use of hearing aids (hours/day) in various periods after hearing replacement. Vertical lines - standard deviation

Download (181KB)
16. Fig. 15. Average time for initial tuning of the SA when using experimental and standard tuning protocols in preschool and school-age children. Vertical lines - standard deviation

Download (95KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies