INDIVIDUAL ALPHA FREQUENCY EEG AS NEUROPHYSIOLOGICAL ENDOPHENOTYPE OF AFFECTIVE PREDISPOSITIONS

Cover Page

Abstract


Individual alpha frequency (IAF) of electroencephalogram (EEG) is regarded as a neurophysiological endophenotypic indicator of cognitive activity featuring individual propensity to efficient cognitive performance and creativity. Considering that cognitive coping style is intrinsic part of emotional regulation, defining medical aspects of individual health as well as risks of psychosomatic diseases, we intended to assess IAF contribution into mechanisms of individual emotional reactivity. Participants and methods. As participants was healthy man subjects (n=62). Three models of laboratory induced emotions were used: emotional perception (1); anxious apprehension (awaiting of inescapable aversive punishment) (2); experience of discrete emotions of anger and joy (3). Results. It was revealed that high IAF individuals exhibit predisposition to prevalence of parasympathetic activity in the global circuit of autonomous regulation, proactive-like coping with inescapable threat, prevailing contribution of the positive emotional stance and better accessibility of recent positive memories. By contrast, low IAF subjects manifested predisposition to prevalence of sympathetic activity in the global circuit of autonomous regulation, maladaptive avoidance-like coping with inescapable threat, insufficiency positive emotional arousal mechanisms. Conclusions. It is suggested that IAF creates a «hardware» construct featuring individual emotional space and adaptability of coping styles to emotional challenges.

 


About the authors

L. I. Aftanas

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russian Federation

Author for correspondence.
Email: l.aftanas@physiol.ru

Russian Federation PhD, professor, academician of RAMS, Head of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-98-55

A. V. Tumyalis

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russian Federation

Email: a.v.tumyalis@physiol.ru

Russian Federation research scientist of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-97-37

References

  1. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: The inhibition–timing hypothesis.Brain Research Reviews. 2007; 1 (53): 63-88.
  2. Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neuroscience and Biobehavioral Reviews. 2013; 13: in press.
  3. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews. 1999; 2-3 (29): 169-195.
  4. Tenke C.E., Kayser J. Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clinical Neurophysiology. 2005; 12 (116): 2826-2846.
  5. Hooper G.S. Comparison of the distributions of classical and adaptively aligned EEG power spectra. International journal of psychophysiology. 2005; 2 (55): 179-189.
  6. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology. 1999; 33 (110): 1842-1857.
  7. Angelakis E., Lubar J.F., Stathopouloua S., Kounios J. Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology. 2004; 4 (115): 887-897.
  8. Klimesch W., Doppelmayr M., Schimke H., Pachinger T. Alpha frequency, reaction time, and the speed of processing information. Clinical Neurophysiology. 1996; 6 (13): 511-518.
  9. Jin Y., O'Halloran J.P., Plon L. , Sandman C.A., Potkin S.G. Alpha EEG predicts visual reaction time. International Journal of Neuroscience. 2006; 9 (116): 1035-1044.
  10. Bazanova O.M., Aftanas L.I. Individual figures EEG alpha activity and nonverbal creativity. Ross. fiziol. zhurnal im. I.M. Sechenova = I.M. Sechenov Russian physiological journal. 2007; 1: 14–26.
  11. Grandy T.H., Werkle-Bergner M., Chicherio C. , Schmiedek F., Lovden M., Lindenberger U. Peak Individual alpha frequency as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology. 2013; 6 (50): 570-582.
  12. Clark C.R., Veltmeyer M. D., Hamilton R.J., Simms E., Paul R., Hermens D. et al. Spontaneous alpha peak frequency predicts working memory performance across the age span. International Journal of Psychophysiology. 2004; 1 (53): 1-9.
  13. Katada A., Hasegawa S., Ohira D. , Kumagai T., Harashima T., Ozaki H. et al. On chronological changes in the basic EEG rhythm in persons with Down syndrome – with special reference to slowing of alpha waves. Brain and Development. 2000; 4 (22): 224-229.
  14. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology. 2004; 7 (115): 1490-1505.
  15. Tran Y., Boord P., Middleton J., Craig A. Levels of brain wave activity (8-13Hz) in persons with spinal cord injury. Spinal Cord. 2004; 2 (42): 73-79.
  16. Stoffers D., Bosboom J.L.W., Deijen J.B. , Wolters E.C., Berendse H.W., Stam C.J. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain. 2007; 7 (130): 1847-1860.
  17. Hayashi K., Tsuda N., Sawa T., Hagihira S. Ketamine increases the frequency of electroencephalographic bicoherence peak on the a spindle area induced with propofol. British Journal of Anaesthesia. 2007; 3 (99): 389-395.
  18. Bojak I., Day H.C., Liley D.T.J. Ketamine, propofol, and the EEG: a neural field analysis of HCN1-mediated interactions. Frontiers in Computational Neuroscience. 2013; April:7-22.
  19. Li D., Li X., Hagihira S., Sleigh J.W. Cross-frequency coupling during isoflurane anaesthesia as revealed by electroencephalographic harmonic wavelet bicoherence. The British Journal of Anaesthesia. 2013; 3 (110): 409-419.
  20. Hasenfratz M., Nil R., Bättig K. Development of central and peripheral smoking effects over time. Psychopharmacology. 1990; 3 (101): 359-365.
  21. Lindgren M., Molander L., Verbaan C. , Lunell E., Rosén I. Electroencephalographic effects of intravenous nicotine – a dose-response study. Psychopharmacology. 1999; 3 (145): 342-350.
  22. Angelakis E., Lubar J.F., Stathopoulou S. Electroencephalographic peak alpha frequency correlates of cognitive traits. Neurosci. Lett. 2004; 1 (371): 60-63.
  23. Saggar M., King B.G., Zanesco A.P., Aichele S.R., Jacobs T.L., Bridwell D.A. et al. Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity. Frontiers in Human Neuroscience. 2012; 6: article 256.
  24. Näpflin M., Wildi M., Sarnthein J. Test–retest reliability of resting EEG spectra validates a statistical signature of persons.Clinical Neurophysiology. 2007; 11 (118): 2519-2524.
  25. Smit C.M., Wright M.J., Hansell N.K. , Geffen G.M., Martin N.G. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. Int. J. Psychophysiol. 2006; 2 (61): 235-243.
  26. Klimesch W., Schimke H., Pfurtschelle G. Alpha Frequency, Cognitive Load and Memory Performance. Brain Topography. 1993; 3 (5): 241-251.
  27. Osaka M., Osaka N., Koyama S., Okusa T., Kakigi R. Individual differences in working memory and the peak alpha frequency shift on magnetoencephalography. Cogn. Brain Res. 1999; 3 (8): 365-368.
  28. Fumoto M., Sato-Suzuki I., Seki Y., Mohri Y., Arita H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. Neuroscience Research. 2004; 3 (50): 307-317.
  29. Guidelines Committee. European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. Journal of Hypertension. 2003; 21: 1011-1053.
  30. Pavlov S.V., Reva N.V., Loktev K.V., Tumyalis A.V., Korenyok V.V., Aftanas L.I. The temporal dynamics of cognitive reappraisal: Cardiovascular consequences of downregulation of negative emotion and upregulation of positive emotion. Psychophysiology. 2013 (in press).
  31. Sidorova P.V., Aftanas L.I., Pavlov S.V., Makhnev V.P., Tumyalis A.V. Activity motivational systems of positive and negative reinforcement and background blood pressure in humans. Ross. fiziol. zhurnal im. I.M. Sechenova = I.M. Sechenov Russian physiological journal. 2007; 12(91): 1415–1426.
  32. Aftanas L.I., Brak I.V., Reva N.V. Pavlov S.V. Oscillators EEG and individual variability defensive reflex the heart of man. Ross. fiziol. zhurnal im. I.M. Sechenova – I.M. Sechenov Russian physiological journal. 2013; 11 (in print).
  33. Crawford H.J., Clarke S.W., Kitner-Triolo M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: laterality and regional EEG activity differences. Int. J. Psychophysiol. 1996; 3 (24): 239-266.
  34. АAftanas L.I., Makhnev V.P., Reva N.V., Savotina L.N. Analysis of induced synchronization and desynchronization of the EEG in terms of perception emotiogenic stimuli: the relationship with the processes of the autonomic activation. Ross. fiziol. zhurnal im. I.M. Sechenova = I.M. Sechenov Russian physiological journal. 2004; 11(90): 1314–1323.
  35. Benedek M., Kaernbach C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 2010; 1 (190): 80-91.
  36. Chervin R.D., Malhotra R.K., Burns J.W. Respiratory cycle-related EEG changes during sleep reflect esophageal pressures. Sleep. 2008; 12 (31): 1713-1720.
  37. Aeschbach D., Matthews J.R., Postolache T.T.,, Jackson M.A., Giesen H.A.,Wehr T.A. Two circadian rhythms in the human electroencephalogram during wakefulness. Am. J. Physiol. 1999; 6 (277): 1771-1779.
  38. Chan A.S., Cheung M.C., Sze S.L., Leung W.W.M., Shi D. Shaolin dantian breathing fosters relaxed and attentive mind: a randomized controlled neuro-electrophysiological study. Evid. Based Complement Alternat. Med. 2011; Article ID 180704.
  39. Feldman J.L., Del Negro C.A. Looking for inspiration: new perspectives on respiratory rhythm. Nature Reviews Neuroscience. 2006; 3 (7): 232-241.
  40. Rybak I.A., Shevtsov N.A., Paton J.F.R., Dick T.E., St.-John W.M., Оrschel M.M. et al. Modeling the ponto-medullary respiratory network. Respiratory Physiology & Neurobiology. 2004; 2-3 (143): 307-319.
  41. GuilleryR.W., ShermanS. M. The thalamus as a monitor of motor outputs. Phil. Trans. R. Soc. Lond. B. 2002; 1428 (357): 1809-1821.
  42. Aubert A.E., Seps B., Beckers F. Heart Rate Variability in Athletes. Sports Med. 2003; 12 (33): 889-919.
  43. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J. 3rd, Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012; 6 (36): 747-756.
  44. Rajendra Acharya U., Joseph K. P. ,Kannathal N., , Lim C.M., Suri J.S. Heart rate variability: a review. Medical and Biological Engineering and Computing. 2006;12 (44):1031-1051.
  45. LхrinczM.L., CrunelliV., HughesS.W. Cellular Dynamics of Cholinergically Induced alpha (8–13 Hz) Rhythms in Sensory Thalamic Nuclei In Vitro. The Journal of Neuroscience. 2008; 3 (28): 660-671.
  46. RothN., BättigK. Effects of cigarette smoking upon frequencies of EEG alpha rhythm and fingertapping. Psychopharmacology. 1991; 2 (105): 86-90.
  47. Morrell H.E., Cohen L.M. Cigarette smoking, anxiety, and depression. J. Psychopathol. Behav. Assessment. 2006; 4 (28): 283-297.
  48. Foulds J., McSorley K., Sneddon J. Effect of subcutaneous nicotine injections on EEG alpha frequency in non-smokers: a placebo-controlled pilot study. Psychopharmacology. 1994; 1-2 (115): 163-166.
  49. Aftanas L.I., Varlamov A.A., Pavlov S.V., Makhnev V.P., Reva N.V. Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands. Int. J. Psychophysiol. 2002; 1 (44): 67-82.
  50. Lang P.J., Bradley M.M. Emotion and the motivational brain. Biol. Psychol. 2010; 3 (84): 437-450.
  51. Sridharan D, Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad Sci. U S A. 2008; 34 (105): 12569-12574.
  52. Cooper N.R., Croft R.J., Dominey S.J., Burgess A.P., Gruzelier J.H. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 2003; 1 (47): 65-74.
  53. Sadaghiani S., Scheeringa R., Lehongre K. , Morillon B., Giraud A.L., Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: asimultaneous Electroencephalography/functional Magnetic Resonance Imaging study. The Journal of Neuroscience. 2010; 30 (30): 10243-10250.
  54. Sadaghiani S., Scheeringa R., Lehongre K., Morillon B., Giraud A.L., D'Esposito M, et al. α-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J. Neurosci. 2012; 32 (41): 14305-14310.
  55. Pury C.L.S., McCubbin J.A., Helfer S.G., Galloway C., McMullen J. Elevated Resting Blood Pressure and Dampened Emotional Response. Psychosomatic Medicine. 2004; 4 (66): 583-587.
  56. McCubbin J.A., Merritt M.M., Sollers J.J. 3rd, Evans M.K., Zonderman A.B., Lane R.D. et al. Cardiovascular-emotional dampening: the relationship between blood pressure and recognition of emotion. Psychosom. Med. 2011; 9 (73): 743-750.
  57. Sgoifo A., Costoli T., Meerlo P., Buwalda B., Pico'-Alfonso M.A., De Boer S. et al. Individual differences in cardiovascular response to social challenge. Neurosci. Biobehav. Rev. 2005; 1 (29): 59-66.
  58. Ray W.J., Cole H.W. EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes. Science. 1985; 4700 (228): 750-752.
  59. Sprangers M.A., Bartels M., Veenhoven R., Baas F., Martin N.G., Mosing M. et al. Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states. Qual. Life Res. 2010; 10 (19): 1429-1437.
  60. Bodenmann S., Rusterholz T., Dürr R., Stoll C., Bachmann V., Geissler E. et al. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain alpha oscillations in young men. J. Neurosci. 2009; 35 (29): 10855-10862.
  61. Başar E. Oscillations in «brain-body-mind»- a holistic view including the autonomous system. Brain Res. 2008; 1235: 2-11.
  62. Basar E. Is research on brain oscillations in a new “take off-state” in integrative brain function? Int. J. Psychophysiol. 2012; 3 (85): 285-288.

Statistics

Views

Abstract - 229

PDF (Russian) - 151

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies