КИНУРЕНИНЫ В ПАТОГЕНЕЗЕ ЭНДОГЕННЫХ ПСИХИЧЕСКИХ ЗАБОЛЕВАНИЙ

Обложка


Цитировать

Полный текст

Аннотация

Незаменимая аминокислота триптофан метаболизируется по метоксииндольному пути до серотонина, мелатонина и 5-гидроксииндолуксусной кислоты и по кинурениновому пути с образованием кинуренина и его нейроактивных метаболитов, таких как 3-гидроксикинуренин, кинуреновая, хинолиновая и ксантуреновая кислота. Кинуренин и его метаболиты играют важную роль в патогенезе депрессивных расстройств и шизофрении. В обзоре приведены литературные данные по современному состоянию этой проблемы.

 

Об авторах

Ю. Е. Шилов

Научный центр психического здоровья РАМН, Москва, Российская Федерация

Автор, ответственный за переписку.
Email: shilov.biochem@gmail.ru

Postgraduate Laboratory of Molecular Biochemistry «the Mental Health Research Center of the Russian Academy of Medical Science» Address: 115522, Moscow, Kashirskoye Highway 34; tel.: (495) 952-91-41

Россия

М. В. Безруков

Научный центр психического здоровья РАМН, Москва, Российская Федерация

Email: bezrmv1chem@mail.ru

PhD, Senior Research Worker of Laboratory of Clinical Biochemistry «the Mental Health Research Center of the Russian Academy of Medical Science» Address: 115522, Moscow, Kashirskoye Highway 34; tel.: (495) 952-91-41

Россия

Список литературы

  1. Eynard N., Flachaire E., Lestra C. et al. Platelet serotonin content and free and total plasma tryptophan in healthy volunteers during 24 hours. Clin. Chem. 1993; 39 (11): 2337–2340.
  2. Yuwiler A., Oldendorf W.H., Geller E. et al. Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J. Neurochem. 1977; 28 (5): 1015–1023.
  3. Mangoni A. The «kynurenine shunt» and depression. Adv. Biochem. Psychopharmacol. 1974; 11 (0): 293–298.
  4. Fernstrom J.D. Effects of the diet on brain neurotransmitters. Metabolism. 1977; 26 (2): 207–223.
  5. Watanabe Y., Fujiwara, Yoshida R. et al. Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase. Biochem. J. 1980; 189 (3): 393–405.
  6. Breton J., Avanzi N., Magagnin S. et al. Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. Eur. J. Biochem. 2000; 267 (4): 1092–1099.
  7. Leklem J.E. Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am. J. Clin. Nutr. 1971; 24 (6): 659–672.
  8. Han Q., Cai T., Tagle D.A. et al. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol. Life Sci. 2010; 67 (3): 353–368.
  9. Gal E.M., Sherman A.D. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem. Res. 1980; 5 (3): 223–239.
  10. Miller C.L., Llenos I.C., Dulay J.R. et al. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis. 2004; 15 (3): 618–629.
  11. Grant R.S., Naif H., Espinosa M. et al. IDO induction in IFN-gamma activated astroglia: a role in improving cell viability during oxidative stress. Redox. Rep. 2000; 5 (2-3): 101–104.
  12. Guillemin G.J., Smythe G.A., Takikawa O. et al. Expression of indoleamine 2,3- ioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005; 49 (1): 15–23.
  13. Guillemin G.J., Kerr S.J., Smythe G.A. et al. Kinurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. Neurochem. 2001; 78 (4): 842–853.
  14. Quagliariello E., Papa S., Saccone C. et al. Effect of 3-hydroxyanthranilic acid on the mitochondrial respiratory system. Biochem. J. 1964; 91 (1): 137–146.
  15. Lardy H.A. The role of tryptophan metabolites in regulating gluconeogenesis. Am. J. Clin. Nutr. 1971; 24 (7): 764–765.
  16. Yuskaitis C.J., Jope R.S. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal. 2009; 21 (2): 264–273.
  17. Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today. 1999; 20 (10): 469–473.
  18. Moffett J.R., Blinder K.L., Venkateshan C.N. et al. Differential effects of kynurenine and tryptophan treatment on quinolinate immunoreactivity in rat lymphoid and non-lymphoid organs. Cell Tissue Res. 1998; 293 (3): 525–534.
  19. Moffett J.R., Namboodiri M.A. Tryptophan and the immune response. Immunol. Cell Biol. 2003; 81 (4): 247–265.
  20. Carlin J.M., Borden E.C., Sondel P.M. et al. Biologic-response-modifier-induced indoleamine 2,3-dioxygenase activity in human peripheral blood mononuclear cell cultures. J. Immunol. 1987; 139 (7): 2414–2418.
  21. Yasui H., Takai K., Yoshida R. et al. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc. Natl. Acad. Sci. USA. 1986; 83 (17): 6622–6626.
  22. Musso T., Gusella G.L., Brooks A. et al. Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood. 1994; 83 (5): 1408–1411.
  23. Salter M., Pogson C.I. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem. J. 1985; 229 (2): 499–504.
  24. Kotake Y., Ueda T., Mori T. et al. Abnormal tryptophan metabolism and experimental diabetes by xanthurenic acid (XA). Acta Vitaminol. Enzymol. 1975; 29 (1–6): 236–239.
  25. Buczko P., Stokowska W., Gorska M. et al. Tryptophan metabolites via kynurenine pathway in saliva of diabetic patients. Dent. Med. Probl. 2006; 43: 21–25.
  26. Chiarugi A., Calvani M., Meli E. et al. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol. 2001; 120 (1–2): 190–198.
  27. Pertz H., Back W. Synthesis and resolution of chiral ring-opened serotonin analogs of the 5-hydroxykynuramine type. Pharm. Acta Helv. 1988; 63 (4-5): 128–131.
  28. Guillemin G.J. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012; 279 (8): 1356–1365.
  29. Okuda S., Nishiyama N., Saito H. et al. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 1998; 70 (1): 299–307.
  30. Perkins M.N., Stone T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982; 247 (1): 184–187.
  31. Kim J.P., Choi D.W. Quinolinate neurotoxicity in cortical cell culture. Neuroscience. 1987; 23 (2): 423–432.
  32. Zhuravlev A.V. Molekulyarnye mekhanizmy deistviya metabolitov kinureninovogo puti obmena triptofana na glyutamatergicheskuyu i kholinergicheskuyu sistemy neirotransmissii u mutantov drozofily. Avtoref. …diss [Molecular mechanisms of action of metabolites kinureninovogo pathway of tryptophan to glutamatergic and cholinergic neurotransmission system in Drosophila mutants. Author’s abstract]. 2012.
  33. Zhuravlev A.V., Zakharov G.A., Savvafteeva-Popova E.V. Molekulyarnye mekhanizmy deistviya metabolitov kinureninovogo puti obmena triptofana na glyutamatergicheskuyu i kholinergicheskuyu sistemy neirotransmissii u mutantov drozofily. Mat-ly s"ezda. VII Sibirskii s"ezd fiziologov [Molecular mechanisms of action of metabolites kinureninovogo pathway of tryptophan to glutamatergic and cholinergic neurotransmission system in Drosophila mutants. Proceedings of the Congress. 7th Siberian Congress of Physiologists]. 2012. pp. 182–183.
  34. Olney J.W., Labruyere J., Wang G. et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991; 254 (5037): 1515–1518.
  35. Hilmas C., Pereira E.F., Alkondon M. et al. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J. Neurosci. 2001; 21 (19): 7463–7473.
  36. Wu H.Q., Rassoulpour A., Schwarcz R. Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J. Neural. Transm. 2007; 114 (1): 33–41.
  37. Schiepers O.J., Wichers M.C., Maes M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005; 29 (2): 201–217.
  38. Thomas A.J., Davis S., Morris C. et al. Increase in interleukin-1beta in late-life depression. Am. J. Psychiatry. 2005; 162 (1): 175–177.
  39. Raison C.L., Miller A.H. Is depression an inflammatory disorder? Curr. Psychiatry Rep. 2011; 13 (6): 467–475.
  40. Myint A.M., Kim Y.K. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses. 2003; 61 (5–6): 519–525.
  41. Appel E., Kolman O., Kazimirsky G. et al. Regulation of GDNF expression in cultured astrocytes by inflammatory stimuli. Neuroreport. 1997; 8 (15): 3309–3312.
  42. Shimizu E., Hashimoto K., Okamura N. et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry. 2003; 54 (1): 70–75.
  43. Lavoie J., Giguere J.F., Layrargues G.P. et al. Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy. Metab. Brain Dis. 1987; 2 (4): 283–290.
  44. Myint A.M., Kim Y.K., Verkerk R. et al. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J. Affect. Disord. 2007; 98 (1–2): 143–151.
  45. Steiner J., Gos T., Bogerts B. et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulated gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation. 2011; 8: 94.
  46. Rajkowska G., Miguel-Hidalgo J.J., Wei J. et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry. 1999; 45 (9): 1085–1098.
  47. Gabbay V., Liebes L., Katz Y. et al. The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010; 34 (1): 37–44.
  48. Wichers M.C., Koek G.H., Robaeys G. et al. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry. 2005; 10 (6): 538–544.
  49. Raison C.L., Dantzer R., Kelly K.W. et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol. Psychiatry. 2000; 15 (4): 393–403.
  50. O’Connor J.C., Lawson M.A., Andre C. et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry. 2009; 14 (5): 511–522.
  51. O’Connor J.C., Andre C., Wang Y. et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to Bacillus Calmette-Guerin. J. Neurosci. 2009; 29 (13): 4200–4209.
  52. Mason M., Manning B. Effects of steroid conjugates on availability of pyridoxal phosphate for kynureninase and kynurenine aminotransferase activity. Am. J. Clin. Nutr. 1971; 24 (7): 786–791.
  53. Pocivavsek A., Wu H.-Q., Schwarcz R. et al. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur. J. Neurosci. 2012; 35 (10): 1605–1612.
  54. Rapaport M.H., McAllister C.G., Pickar D. et al. Elevated levels of soluble interleukin 2 receptors in schizophrenia. Arch. Gen. Psychiatry. 1989; 46 (3): 291–292.
  55. Kim Y.K., Myint A.M., Verkerk R. et al. Cytokine changes and tryptophan metabolites in medication naïve and medication-free schizophrenia patients. Neuropsychobiology. 2009; 59 (2): 123–129.
  56. Potvin S., Stip E., Sepehry A.A. et al. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry. 2008; 63 (8): 801–808.
  57. Schwarcz R., Rassoulpour A., Wu H.-Q. et al. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry. 2001; 50 (7): 521–530.
  58. Sathyasaikumar K.V., Stachowski E.K., Schwarcz. et al. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr. Bull. 2011; 37 (6): 1147–1156.
  59. Erhardt S., Blennow K., Nordin C. et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 2001; 313 (1-2): 96–98.
  60. Erhardt S., Schwieler L., Engberg G. Kynurenic acid and schizophrenia. Adv. Exp. Med. Biol. 2003; 527: 155–165.
  61. Ceresoli-Borroni G., Rassoulpour A., Wu H.-Q. et al. Chronic neuroleptic treatment reduces endogenous kynurenic acid levels in rat brain. J. Neural. Transm. 2006; 113 (10): 1355–1365.
  62. Andreasen N.C., O’Leary D.S., Flaum M. et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997; 349 (9067): 1730–1734.
  63. Takahashi T., Wood S.J., Soulsby B. et al. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr. Res. 2009; 108 (1–): 49–56.
  64. Copeland C.S., Neale S.A., Salt T.E. Actions of Xanthurenic Acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology. 2012; [Epub ahead of print].
  65. Condray R., Dougherty G.G. Jr., Keshavan M.S. 3-Hydroxykynurenine and clinical symptoms in first-episode neuroleptic-naïve patients with schizophrenia. Int. J. Neuropsychopharmacol. 2011; 14 (6): 756–767.
  66. Myint A.M., Schwarz M., Verkerk R. Imballance of kynurenine metabolites in drug naive schizophrenia. Brain Behav. Immun. 2011; 25 (8): 1576–1581.
  67. Erhardt S., Olsson S.K., Engberg G. Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs. 2009; 23 (2): 91–101.
  68. Stone T.W., Forrest C.M., Darlington L.G. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J. 2012; 279 (8): 1386–1397.
  69. Badawy A.A., Morgan C.J. Rapid isocratic liquid chromatographic separation and quantification of tryptophan and six kynurenine metabolites in biological samples with ultraviolet and fluorimetric detection. Int. J. Tryptophan Res. 2010; 3: 175–186.
  70. Sidorova A.A., Kartsova L.A. Study kinureninovogo tryptophan pathway by capillary electrophoresis and mass spectrometry. Zhurn. analitich. khimii = Journal of analytic chemistry. 2011; 66 (3): 329–334.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 1970



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах