MICRORNA: ROLE IN GH-SECRETING PITUITARY ADENOMA PATHOGENESIS

Cover Page


Cite item

Full Text

Abstract

MicroRNA presents small (19–25 nucleotides long) non-coding RNA molecules which regulate gene expression on post-transcriptional level. Numerous studies revealed microRNA’s important role in physiological processes. Moreover, its aberrant expression has been described in many pathological conditions including pituitary tumors. Pituitary adenomas are benign intracranial tumors with various clinical presentations depending on the type of hormone secretion. Prediction of the pituitary adenoma aggressive level and treatment response is challenging due to the lack of reliable clinical predictors or non-invasive biomarkers. MicroRNAs in body fluids could potentially be a minimally invasive biomarker for tumor diagnosis and a predictor of treatment response and prognosis. Some studies reveal that microRNA is specific for a different pituitary adenoma subtypes. In the article, we review existing evidence on microRNA expression in GH-secreting tumors and its possible involvement in pathogenesis of somatotroph tumors.

About the authors

A. S. Lutsenko

Endocrinology Research Centre

Author for correspondence.
Email: some91@mail.ru
ORCID iD: 0000-0002-9314-7831
Moscow Россия

Z. E. Belaya

Endocrinology Research Centre

Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
Moscow Россия

E. G. Przhiyalkovskaya

Endocrinology Research Centre

Email: przhiyalkovskaya.elena@gmail.com
ORCID iD: 0000-0001-9119-2447

Moscow

Россия

G. A. Mel'nichenko

Endocrinology Research Centre

Email: teofrast2000@mail.ru
ORCID iD: 0000-0002-5634-7877

Moscow

Россия

References

  1. Chen Z, Li S, Subramaniam S, et al. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219. doi: 10.1146/annurev-bioeng-071516-044720.
  2. Gadelha MR, Kasuki L, Denes J, et al. MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest. 2013;36(10):889–895. doi: 10.1007/BF03346759.
  3. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. doi: 10.1073/pnas.0804549105.
  4. Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat Res. 2011;717(1–2):1–8. doi: 10.1016/j.mrfmmm.2011.03.009.
  5. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics. 2010;11(9):597–610. doi: 10.1038/nrg2843.
  6. Voglova K, Bezakova J, Herichova I. Progress in micro RNA focused research in endocrinology. Endocr Regul. 2016;50(2):83–105. doi: 10.1515/enr-2016-0012.
  7. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035.
  8. Аушев В.Н. МикроРНК: малые молекулы с большим значением // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. ― 2015. ― Т.8. ― №1 ― С. 1–12. [Aushev VN. MicroRNA: small molecules of great significance. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika. 2015;8(1):1–12. (In Russ).]
  9. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71. doi: 10.1038/nature07242.
  10. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38(12):1452–1456. doi: 10.1038/ng1910.
  11. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035.
  12. Di Ieva A, Butz H, Niamah M, et al. MicroRNAs as biomarkers in pituitary tumors. Neurosurgery. 2014;75(2):181–188. doi: 10.1227/NEU.0000000000000369.
  13. Beilharz TH, Humphreys DT, Clancy JL, et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One. 2009;4(8):e6783. doi: 10.1371/journal.pone.0006783.
  14. Wierinckx A, Roche M, Legras-Lachuer C, et al. MicroRNAs in pituitary tumors. Mol Cell Endocrinol. Forthcoming 2017. doi: 10.1016/j.mce.2017.01.021.
  15. Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–256. http://dx.doi.org/10.1038/ncb2441.
  16. Weber JA, Baxter DH, Zhang SL, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. doi: 10.1373/clinchem.2010.147405.
  17. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. doi: 10.1093/nar/gkr254.
  18. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. doi: 10.1073/pnas.1019055108.
  19. Wagner J, Riwanto M, Besler C, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–1400. doi: 10.1161/ATVBAHA.112.300741.
  20. Tomankova T, Petrek M, Gallo J, Kriegova E. MicroRNAs: emerging regulators of immune-mediated diseases. Scand J Immunol. 2012;75(2):129–141. doi: 10.1111/j.1365-3083.2011.02650.x.
  21. Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110(18):7312–7317. doi: 10.1073/pnas.1220998110.
  22. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21(2):139–146. doi: 10.1016/j.semcancer.2011.01.002.
  23. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301. doi: 10.1016/j.ymeth.2010.01.032.
  24. Rossi S, Calin GA. Bioinformatics, non-coding RNAs and its possible application in personalized medicine. Adv Exp Med Biol. 2013;774:21–37. doi: 10.1007/978-94-007-5590-1_2.
  25. Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53. doi: 10.1007/978-94-007-5590-1_3.
  26. Doran J, Strauss WM. Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol. 2007;26(5):353–360. doi: 10.1089/dna.2006.0546.
  27. Wang J, Chen JY, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231(1):25–30. doi: 10.1002/jcp.25056.
  28. Varendi K, Matlik K, Andressoo JO. From microRNA target validation to therapy: lessons learned from studies on BDNF. Cell Mol Life Sci. 2015;72(9):1779–1794. doi: 10.1007/s00018-015-1836-z.
  29. Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006;13(9):849–851. doi: 10.1038/nsmb1138.
  30. Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446–454. doi: 10.1161/circgenetics.110.958975.
  31. Швангирадзе Т.А, Бондаренко И.З., Трошина Е.А., и др. Профиль микроРНК, ассоциированных с ИБС, у пациентов с сахарным диабетом 2 типа // Ожирение и метаболизм. — 2016. — Т.13. — №4 — С. 34–38. [Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obesity and metabolism. 2016;13(4):34–38. (In Russ).] doi: 10.14341/omet2016434-38.
  32. Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20. doi: 10.1007/978-94-007-5590-1_1.
  33. Chi YD, Zhou DM. MicroRNAs in colorectal carcinoma - from pathogenesis to therapy. J Exp Clin Cancer Res. 2016;35:43. doi: ARTN 4310.1186/s13046-016-0320-4.
  34. Khoshnevisan A, Parvin M, Ghorbanmehr N, et al. A significant upregulation of miR5-886-p in high grade and invasive bladder tumors. Urol J. 2015;12(3):2160–2164.
  35. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., и др. Эпигенетические аспекты остеопороза // Вестник Российской академии медицинских наук. ― 2015. ― Т.70. ― №5 ― С. 541–548. [Grebennikova TA, Belaya ZE, Rozhinskaya LY, et al. Epigenetic aspects of osteoporosis. Annals of the Russian academy of medical sciences. 2015;70(5):541–548. (In Russ).] doi: 10.15690/vramn.v70.i5.1440.
  36. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer. 2002;2(11):836–849. doi: 10.1038/nrc926.
  37. Li XH, Wang EL, Zhou HM, et al. MicroRNAs in human pituitary adenomas. Int J Endocrinol. 2014;2014:435171. doi: 10.1155/2014/435171.
  38. Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7(5):257–266. doi: 10.1038/nrendo.2011.40.
  39. Gentilin E, Degli Uberti E, Zatelli MC. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 2016;30(5):629–639. doi: 10.1016/j.beem.2016.10.002.
  40. Gentilin E, Di Pasquale C, Gagliano T, et al. Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells. Mol Cell Endocrinol. 2016;419:252-258. doi: 10.1016/j.mce.2015.10.025.
  41. Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol. 2009;42(2):75–86. doi: 10.1677/Jme-08-0146.
  42. Jiang X, Zhang X. The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab (Seoul). 2013;28(4):245–254. doi: 10.3803/EnM.2013.28.4.245.
  43. Tagliati F, Gagliano T, Gentilin E, et al. Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines. PLoS One. 2013;8(9):e75194. doi: 10.1371/journal.pone.0075194.
  44. Wang C, Su Z, Sanai N, et al. microRNA expression profile and differentially-expressed genes in prolactinomas following bromocriptine treatment. Oncol Rep. 2012;27(5):1312–1320. doi: 10.3892/or.2012.1690.
  45. Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005;204(1):280–285. doi: 10.1002/jcp.20282.
  46. Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210(2):370–377. doi: 10.1002/jcp.20832.
  47. Mao ZG, He DS, Zhou J, et al. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol. 2010;5:79. doi: 10.1186/1746-1596-5-79.
  48. Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009;94(1):320–323. doi: 10.1210/jc.2008-1451.
  49. Butz H, Liko I, Czirjak S, et al. MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011;14(2):112–124. doi: 10.1007/s11102-010-0268-x.
  50. Cheunsuchon P, Zhou Y, Zhang X, et al. Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol. 2011;179(4):2120–2130. doi: 10.1016/j.ajpath.2011.07.002.
  51. D’Angelo D, Esposito F, Fusco A. Epigenetic mechanisms leading to overexpression of HMGA proteins in human pituitary adenomas. Front Med (Lausanne). 2015;2:39. doi: 10.3389/fmed.2015.00039.
  52. Лапшина А.М. Хандаева П.М., Белая Ж.Е., и др. Роль микроРНК в онкогенезе опухолей гипофиза и их практическая значимость // Терапевтический архив. — 2016. — Т.88. — №8 — С. 115–120. [Lapshina AM, Khandaeva PM, Belaya ZhE, et al. Role of microRNA in oncogenesis of pituitary tumors and their practical significance. Ter Arkh. 2016;88(8):115–120. (In Russ).] doi: 10.17116/terarkh2016888115-120.
  53. Молитвословова Н.Н. Акромегалия: современные достижения в диагностике и лечении // Проблемы эндокринологии. ― 2011. ― №1 ― С. 46–59 [Molitvoslovova NN. Acromegaly: recent progress in diagnostics and treatment. Problems of endocrinology. 2011;(1):46–59. (In Russ).] doi: 10.14341/probl201157146-59.
  54. Burton T, Le Nestour E, Neary M, Ludlam WH. Incidence and prevalence of acromegaly in a large US health plan database. Pituitary. 2016;19(3):262–267. doi: 10.1007/s11102-015-0701-2.
  55. Dal J, Feldt-Rasmussen U, Andersen M, et al. Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur J Endocrinol. 2016;175(3):181–190. doi: 10.1530/EJE-16-0117.
  56. Katznelson L, JL, Cook DM, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly — 2011 update. Endocr Pract. 2011;17 Suppl 4:1–44. doi: 10.4158/ep.17.s4.1.
  57. Ntali G, Karavitaki N. Recent advances in the management of acromegaly. F1000Res. 2015;4:1426. doi: 10.12688/f1000research.7043.1.
  58. Holdaway IM, Bolland MJ, Gamble GD. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol. 2008;159(2):89–95. doi: 10.1530/EJE-08-0267.
  59. Mercado M, Gonzalez B, Vargas G, et al. Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J Clin Endocrinol Metab. 2014;99(12):4438–4446. doi: 10.1210/jc.2014-2670.
  60. D’Angelo D, Palmieri D, Mussnich P, et al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab. 2012;97(7):E1128–1138. doi: 10.1210/jc.2011-3482.
  61. Palumbo T, Faucz FR, Azevedo M, et al. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene. 2013;32(13):1651–1659. doi: 10.1038/onc.2012.190.
  62. Leone V, Langella C, D’Angelo D, et al. miR-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol. 2014;390(1–2):1–7. doi: 10.1016/j.mce.2014.03.002.
  63. Palmieri D, D’Angelo D, Valentino T, et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31(34):3857–3865. doi: 10.1038/onc.2011.557.
  64. Trivellin G, Butz H, Delhove J, et al. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab. 2012;303(6):E708–E719. doi: 10.1152/ajpendo.00546.2011.
  65. Fan X, Mao Z, He D, et al. Expression of somatostatin receptor subtype 2 in growth hormone-secreting pituitary adenoma and the regulation of miR-185. J Endocrinol Invest. 2015;38(10):1117–1128. doi: 10.1007/s40618-015-0306-7.
  66. Denes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107. doi: 10.1371/journal.pone.0117107.
  67. Qian ZR, Asa SL, Siomi H, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 2009;22(3):431–441. doi: 10.1038/modpathol.2008.202.
  68. Zhou K, Zhang TR, Fan YD, et al. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumor Biology. 2016;37(10):13469–13477. doi: 10.1007/s13277-016-5155-2.
  69. Yu CT, Li JX, Sun FN, et al. Expression and clinical significance of miR-26a and pleomorphic adenoma gene 1 (PLAG1) in invasive pituitary adenoma. Med Sci Monit. 2016;22:5101–5108. doi: 10.12659/Msm.898908.
  70. Fedele M, Fusco A. HMGA and cancer. Biochim Biophys Acta. 2010;1799(1–2):48–54. doi: 10.1016/j.bbagrm.2009.11.007.
  71. Knoll S, Emmrich S, Putzer BM. The E2F1-miRNA cancer progression network. Adv Exp Med Biol. 2013;774:135–147. doi: 10.1007/978-94-007-5590-1_8.
  72. Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–1230. doi: 10.1126/science.1126100.
  73. Raitila A, Georgitsi M, Karhu A, et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr Relat Cancer. 2007;14(3):901–906. doi: 10.1677/Erc-07-0025.
  74. Kasuki Jomori de Pinho L, Vieira Neto L, Armondi Wildemberg LE, et al. Low aryl hydrocarbon receptor-interacting protein expression is a better marker of invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology. 2011;94(1):39–48. doi: 10.1159/000322787.
  75. Kelly BN, Haverstick DM, Lee JK, et al. Circulating microRNA as a biomarker of human growth hormone administration to patients. Drug Test Anal. 2014;6(3):234–238. doi: 10.1002/dta.1469.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies