Preview

Вестник Российской академии медицинских наук

Расширенный поиск

МИКРОРНК И ИХ ЗНАЧЕНИЕ В ПАТОГЕНЕЗЕ СТГ-ПРОДУЦИРУЮЩИХ АДЕНОМ ГИПОФИЗА

https://doi.org/10.15690/vramn856

Полный текст:

Аннотация

 

МикроРНК — это малые некодирующие молекулы РНК, состоящие из 19–25 нуклеотидов, которые осуществляют регуляцию экспрессии генов путем воздействия на матричную РНК. В настоящее время появляется все больше данных о вкладе микроРНК в патогенез различных заболеваний, особенно опухолевых. Изменения в их экспрессии отмечаются при многих патологических состояниях, а устойчивость внеклеточных микроРНК к внешним воздействиям делает их перспективными кандидатами для использования в качестве биомаркеров. Аденомы гипофиза являются частыми интракраниальными образованиями, клиническая картина которых разнообразна и зависит от гормональной активности и особенностей роста опухоли. На дооперативном этапе спрогнозировать агрессивность течения заболевания и оценить возможность применения консервативного лечения бывает тяжело в связи с отсутствием неинвазивных опухолевых биомаркеров. Опубликовано большое количество исследований, посвященных экспрессии микроРНК в аденомах гипофиза с различной гормональной активностью и их связи с патогенетическими механизмами, что отражает интерес к данной области. В данном обзоре подробно рассмотрены результаты исследований по экспрессии микроРНК в СТГ-продуцирующих аденомах гипофиза и их возможная роль в патогенезе акромегалии.

Об авторах

Александр Сергеевич Луценко
Эндокринологический научный центр
Россия

Научный сотрудник отделения нейроэндокринологии и остеопатий

117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (495) 668-20-79 доб. 54-06.

SPIN-код: 4037-1030



Жанна Евгеньевна Белая
Эндокринологический научный центр
Россия

Доктор медицинских наук, заведующая отделением нейроэндокринологии и остеопатий.

117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (495) 668-20-79 доб. 54-06.

SPIN-код: 4746-7173



Елена Георгиевна Пржиялковская
Эндокринологический научный центр
Россия

Кандидат медицинских наук, старший научный сотрудник отделения нейроэндокринологии и остеопатий.

117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (495) 668-20-79 доб. 54-06.

SPIN-код: 9309-3256



Галина Афанасьевна Мельниченко
Эндокринологический научный центр
Россия

Доктор медицинских наук, профессор, академик РАН, директор Института клинической эндокринологии.

117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (499) 124-58-32.

SPIN-код: 8615-0038



Список литературы

1. Chen Z, Li S, Subramaniam S, et al. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219. doi: 10.1146/annurev-bioeng-071516-044720.

2. Gadelha MR, Kasuki L, Denes J, et al. MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest. 2013;36(10):889–895. doi: 10.1007/BF03346759.

3. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. doi: 10.1073/pnas.0804549105.

4. Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat Res. 2011;717(1–2):1–8. doi: 10.1016/j.mrfmmm.2011.03.009.

5. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics. 2010;11(9):597–610. doi: 10.1038/nrg2843.

6. Voglova K, Bezakova J, Herichova I. Progress in micro RNA focused research in endocrinology. Endocr Regul. 2016;50(2):83–105. doi: 10.1515/enr-2016-0012.

7. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035.

8. Аушев В.Н. МикроРНК: малые молекулы с большим значением // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. ― 2015. ― Т.8. ― №1 ― С. 1–12. [Aushev VN. MicroRNA: small molecules of great significance. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika. 2015;8(1):1–12. (In Russ).]

9. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71. doi: 10.1038/nature07242.

10. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38(12):1452–1456. doi: 10.1038/ng1910.

11. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035.

12. Di Ieva A, Butz H, Niamah M, et al. MicroRNAs as biomarkers in pituitary tumors. Neurosurgery. 2014;75(2):181–188. doi: 10.1227/NEU.0000000000000369.

13. Beilharz TH, Humphreys DT, Clancy JL, et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One. 2009;4(8):e6783. doi: 10.1371/journal.pone.0006783.

14. Wierinckx A, Roche M, Legras-Lachuer C, et al. MicroRNAs in pituitary tumors. Mol Cell Endocrinol. Forthcoming 2017. doi: 10.1016/j.mce.2017.01.021.

15. Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–256. http://dx.doi.org/10.1038/ncb2441.

16. Weber JA, Baxter DH, Zhang SL, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. doi: 10.1373/clinchem.2010.147405.

17. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. doi: 10.1093/nar/gkr254.

18. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. doi: 10.1073/pnas.1019055108.

19. Wagner J, Riwanto M, Besler C, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–1400. doi: 10.1161/ATVBAHA.112.300741.

20. Tomankova T, Petrek M, Gallo J, Kriegova E. MicroRNAs: emerging regulators of immune-mediated diseases. Scand J Immunol. 2012;75(2):129–141. doi: 10.1111/j.1365-3083.2011.02650.x.

21. Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110(18):7312–7317. doi: 10.1073/pnas.1220998110.

22. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21(2):139–146. doi: 10.1016/j.semcancer.2011.01.002.

23. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301. doi: 10.1016/j.ymeth.2010.01.032.

24. Rossi S, Calin GA. Bioinformatics, non-coding RNAs and its possible application in personalized medicine. Adv Exp Med Biol. 2013;774:21–37. doi: 10.1007/978-94-007-5590-1_2.

25. Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53. doi: 10.1007/978-94-007-5590-1_3.

26. Doran J, Strauss WM. Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol. 2007;26(5):353–360. doi: 10.1089/dna.2006.0546.

27. Wang J, Chen JY, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231(1):25–30. doi: 10.1002/jcp.25056.

28. Varendi K, Matlik K, Andressoo JO. From microRNA target validation to therapy: lessons learned from studies on BDNF. Cell Mol Life Sci. 2015;72(9):1779–1794. doi: 10.1007/s00018-015-1836-z.

29. Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006;13(9):849–851. doi: 10.1038/nsmb1138.

30. Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446–454. doi: 10.1161/circgenetics.110.958975.

31. Швангирадзе Т.А, Бондаренко И.З., Трошина Е.А., и др. Профиль микроРНК, ассоциированных с ИБС, у пациентов с сахарным диабетом 2 типа // Ожирение и метаболизм. — 2016. — Т.13. — №4 — С. 34–38. [Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obesity and metabolism. 2016;13(4):34–38. (In Russ).] doi: 10.14341/omet2016434-38.

32. Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20. doi: 10.1007/978-94-007-5590-1_1.

33. Chi YD, Zhou DM. MicroRNAs in colorectal carcinoma - from pathogenesis to therapy. J Exp Clin Cancer Res. 2016;35:43. doi: ARTN 4310.1186/s13046-016-0320-4.

34. Khoshnevisan A, Parvin M, Ghorbanmehr N, et al. A significant upregulation of miR5-886-p in high grade and invasive bladder tumors. Urol J. 2015;12(3):2160–2164.

35. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., и др. Эпигенетические аспекты остеопороза // Вестник Российской академии медицинских наук. ― 2015. ― Т.70. ― №5 ― С. 541–548. [Grebennikova TA, Belaya ZE, Rozhinskaya LY, et al. Epigenetic aspects of osteoporosis. Annals of the Russian academy of medical sciences. 2015;70(5):541–548. (In Russ).] doi: 10.15690/vramn.v70.i5.1440.

36. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer. 2002;2(11):836–849. doi: 10.1038/nrc926.

37. Li XH, Wang EL, Zhou HM, et al. MicroRNAs in human pituitary adenomas. Int J Endocrinol. 2014;2014:435171. doi: 10.1155/2014/435171.

38. Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7(5):257–266. doi: 10.1038/nrendo.2011.40.

39. Gentilin E, Degli Uberti E, Zatelli MC. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 2016;30(5):629–639. doi: 10.1016/j.beem.2016.10.002.

40. Gentilin E, Di Pasquale C, Gagliano T, et al. Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells. Mol Cell Endocrinol. 2016;419:252-258. doi: 10.1016/j.mce.2015.10.025.

41. Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol. 2009;42(2):75–86. doi: 10.1677/Jme-08-0146.

42. Jiang X, Zhang X. The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab (Seoul). 2013;28(4):245–254. doi: 10.3803/EnM.2013.28.4.245.

43. Tagliati F, Gagliano T, Gentilin E, et al. Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines. PLoS One. 2013;8(9):e75194. doi: 10.1371/journal.pone.0075194.

44. Wang C, Su Z, Sanai N, et al. microRNA expression profile and differentially-expressed genes in prolactinomas following bromocriptine treatment. Oncol Rep. 2012;27(5):1312–1320. doi: 10.3892/or.2012.1690.

45. Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005;204(1):280–285. doi: 10.1002/jcp.20282.

46. Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210(2):370–377. doi: 10.1002/jcp.20832.

47. Mao ZG, He DS, Zhou J, et al. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol. 2010;5:79. doi: 10.1186/1746-1596-5-79.

48. Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009;94(1):320–323. doi: 10.1210/jc.2008-1451.

49. Butz H, Liko I, Czirjak S, et al. MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011;14(2):112–124. doi: 10.1007/s11102-010-0268-x.

50. Cheunsuchon P, Zhou Y, Zhang X, et al. Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol. 2011;179(4):2120–2130. doi: 10.1016/j.ajpath.2011.07.002.

51. D’Angelo D, Esposito F, Fusco A. Epigenetic mechanisms leading to overexpression of HMGA proteins in human pituitary adenomas. Front Med (Lausanne). 2015;2:39. doi: 10.3389/fmed.2015.00039.

52. Лапшина А.М. Хандаева П.М., Белая Ж.Е., и др. Роль микроРНК в онкогенезе опухолей гипофиза и их практическая значимость // Терапевтический архив. — 2016. — Т.88. — №8 — С. 115–120. [Lapshina AM, Khandaeva PM, Belaya ZhE, et al. Role of microRNA in oncogenesis of pituitary tumors and their practical significance. Ter Arkh. 2016;88(8):115–120. (In Russ).] doi: 10.17116/terarkh2016888115-120.

53. Молитвословова Н.Н. Акромегалия: современные достижения в диагностике и лечении // Проблемы эндокринологии. ― 2011. ― №1 ― С. 46–59 [Molitvoslovova NN. Acromegaly: recent progress in diagnostics and treatment. Problems of endocrinology. 2011;(1):46–59. (In Russ).] doi: 10.14341/probl201157146-59.

54. Burton T, Le Nestour E, Neary M, Ludlam WH. Incidence and prevalence of acromegaly in a large US health plan database. Pituitary. 2016;19(3):262–267. doi: 10.1007/s11102-015-0701-2.

55. Dal J, Feldt-Rasmussen U, Andersen M, et al. Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur J Endocrinol. 2016;175(3):181–190. doi: 10.1530/EJE-16-0117.

56. Katznelson L, JL, Cook DM, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly — 2011 update. Endocr Pract. 2011;17 Suppl 4:1–44. doi: 10.4158/ep.17.s4.1.

57. Ntali G, Karavitaki N. Recent advances in the management of acromegaly. F1000Res. 2015;4:1426. doi: 10.12688/f1000research.7043.1.

58. Holdaway IM, Bolland MJ, Gamble GD. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol. 2008;159(2):89–95. doi: 10.1530/EJE-08-0267.

59. Mercado M, Gonzalez B, Vargas G, et al. Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J Clin Endocrinol Metab. 2014;99(12):4438–4446. doi: 10.1210/jc.2014-2670.

60. D’Angelo D, Palmieri D, Mussnich P, et al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab. 2012;97(7):E1128–1138. doi: 10.1210/jc.2011-3482.

61. Palumbo T, Faucz FR, Azevedo M, et al. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene. 2013;32(13):1651–1659. doi: 10.1038/onc.2012.190.

62. Leone V, Langella C, D’Angelo D, et al. miR-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol. 2014;390(1–2):1–7. doi: 10.1016/j.mce.2014.03.002.

63. Palmieri D, D’Angelo D, Valentino T, et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31(34):3857–3865. doi: 10.1038/onc.2011.557.

64. Trivellin G, Butz H, Delhove J, et al. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab. 2012;303(6):E708–E719. doi: 10.1152/ajpendo.00546.2011.

65. Fan X, Mao Z, He D, et al. Expression of somatostatin receptor subtype 2 in growth hormone-secreting pituitary adenoma and the regulation of miR-185. J Endocrinol Invest. 2015;38(10):1117–1128. doi: 10.1007/s40618-015-0306-7.

66. Denes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107. doi: 10.1371/journal.pone.0117107.

67. Qian ZR, Asa SL, Siomi H, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 2009;22(3):431–441. doi: 10.1038/modpathol.2008.202.

68. Zhou K, Zhang TR, Fan YD, et al. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumor Biology. 2016;37(10):13469–13477. doi: 10.1007/s13277-016-5155-2.

69. Yu CT, Li JX, Sun FN, et al. Expression and clinical significance of miR-26a and pleomorphic adenoma gene 1 (PLAG1) in invasive pituitary adenoma. Med Sci Monit. 2016;22:5101–5108. doi: 10.12659/Msm.898908.

70. Fedele M, Fusco A. HMGA and cancer. Biochim Biophys Acta. 2010;1799(1–2):48–54. doi: 10.1016/j.bbagrm.2009.11.007.

71. Knoll S, Emmrich S, Putzer BM. The E2F1-miRNA cancer progression network. Adv Exp Med Biol. 2013;774:135–147. doi: 10.1007/978-94-007-5590-1_8.

72. Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–1230. doi: 10.1126/science.1126100.

73. Raitila A, Georgitsi M, Karhu A, et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr Relat Cancer. 2007;14(3):901–906. doi: 10.1677/Erc-07-0025.

74. Kasuki Jomori de Pinho L, Vieira Neto L, Armondi Wildemberg LE, et al. Low aryl hydrocarbon receptor-interacting protein expression is a better marker of invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology. 2011;94(1):39–48. doi: 10.1159/000322787.

75. Kelly BN, Haverstick DM, Lee JK, et al. Circulating microRNA as a biomarker of human growth hormone administration to patients. Drug Test Anal. 2014;6(3):234–238. doi: 10.1002/dta.1469.


Для цитирования:


Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Мельниченко Г.А. МИКРОРНК И ИХ ЗНАЧЕНИЕ В ПАТОГЕНЕЗЕ СТГ-ПРОДУЦИРУЮЩИХ АДЕНОМ ГИПОФИЗА. Вестник Российской академии медицинских наук. 2017;72(4):290-298. https://doi.org/10.15690/vramn856

For citation:


Lutsenko A.S., Belaya Z.E., Przhiyalkovskaya E.G., Mel'nichenko G.A. MICRORNA: ROLE IN GH-SECRETING PITUITARY ADENOMA PATHOGENESIS. Annals of the Russian academy of medical sciences. 2017;72(4):290-298. (In Russ.) https://doi.org/10.15690/vramn856

Просмотров: 262


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)