NEUROPROTECTIVE EFFECTS OF SULFATED POLYSACCHARIDES FROM SEAWEED
- Authors: Besednova N.N.1, Somova L.M.1, Gulyaev S.A.2, Zaporozhets T.S.1
-
Affiliations:
- Scientific Research Institute of Epidemiology and Microbiology of Siberian Branch of RAMS, Vladivostok, Russian Federation
- Pacific State Medical University, Vladivostok, Russian Federation
- Issue: Vol 68, No 5 (2013)
- Pages: 52-59
- Section: SHORT MESSAGES
- Published:
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/186
- DOI: https://doi.org/10.15690/vramn.v68i5.663
- ID: 186
Cite item
Full Text
Abstract
Currently, neurodegenerative diseases (NDD) occupy a significant place in the structure of disease of the elderly, which dictates the need to find new and effective treatment and prevention of this pathology. At the heart of NDD development is a violation of the metabolism and the conformational change of cellular proteins with subsequent accumulation and aggregation of their in certain groups of neurons. The immediate cause of the death of the affected neurons in NDD is initiated by intracellular proteins apoptosis, during which a large number of neurotransmitter glutamate is released. The consequence of an imbalance in the synthesis and release of neurotransmitters are related the memory impairment, motor coordination and cognitive abilities of human. Based on the analysis of the extensive literature domestic and predominantly foreign authors of the last decade the modern data on the effect of sulfated polysaccharides (SPS) of algae in vivo and in vitro in degenerative processes of the nervous system. Found that due to its multi-point impact, SPS have on the body antioxidant, anti-inflammatory, antiapoptotic, antihyperlipidemic, anti-toxic effects. Consequently, SPS can arrest a number of secondary pathological effects observed in neurodegenerative diseases (oxidative stress, inflammation, the phenomenon of increased neuronal apoptosis, toxic effects etc.). Varieties of pathogenic mechanisms underlying NDD makes possible the combined use of neuroprotective compounds acting sequentially in different stages of a pathological process. Accumulated a lot of experimental evidence to assume that the SPS may be the basis for the creation of next-generation drugs for the treatment of neurodegenerative diseases.
About the authors
N. N. Besednova
Scientific Research Institute of Epidemiology and Microbiology of Siberian Branch of RAMS, Vladivostok, Russian Federation
Author for correspondence.
Email: besednoff_lev@mail.ru
RAMS academician, Senior Research Worker, Immunilogy Laboratory, G.P. Somova Research Institute of Epidemiology and Microbiology Siberian Branch of RAMS Address: 690087, Vladivostok, Selskaya St., 1; tel.: (423) 244-24-46 Россия
L. M. Somova
Scientific Research Institute of Epidemiology and Microbiology of Siberian Branch of RAMS, Vladivostok, Russian Federation
Email: l_somova@mail.ru
PhD, Professor, Senior Research Worker, Laboratory of Pathomorphology and Electron Microscopy, G.P. Somova Research Institute of Epidemiology and Microbiology Siberian Branch of RAMS Address: 690087, Vladivostok, Selskaya St., 1; tel.: (423) 244-14-38 Россия
S. A. Gulyaev
Pacific State Medical University, Vladivostok, Russian Federation
Email: s.gulaeva1941@yandex.ru
PhD, Professor, Department of Neurology, Neurosurgery and Medical Genetics, Pacific State Medical University Address: 690002, Vladivostok, Ostryakov av., 2 Россия
T. S. Zaporozhets
Scientific Research Institute of Epidemiology and Microbiology of Siberian Branch of RAMS, Vladivostok, Russian Federation
Email: niiem_vl@mail.ru
PhD, Deputy Director for Science, G.P. Somova Research Institute of Epidemiology and Microbiology Siberian Branch of RAMS Address: 690087, Vladivostok, Selskaya St., 1; tel.: (423) 244-24-34 Россия
References
- Damulin I.V. Diagnosis and treatment of dementia. RMZh = Russian medical journal. 2004; 12 (7): 465–467.
- Pangestuti R., Kim S.K. Neuroprotective properties of chitosan and its derivates. Mar. Drugs. 2010; 8: 2117–2128.
- Pangestuti R., Kim S.K. Neuroprotective effects of marine algae. Mar. Drugs. 2011; 9: 803–818.
- Ponomarev V.V. Neurodegenerative diseases: present and future. Med. novosti = Medical news. 2007; 5: 23–28.
- Illarioshkin S.N. Violations of cellular energy in diseases of the nervous system. Nervnye bolezni = Nervous Diseases. 2012; 1: 34–38.
- van Eldik L.J., Ralay R.H. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int. Rev. Neurobiol. 2007; 82: 277–296.
- Parfenov V.A. Prevention of Alzheimer's disease. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, neuropsychiatry, psychosomatics. 2011; 3: 1–5.
- Usov A.I., Bilan M.I. Fucoidans - sulfated polysaccharides of brown algae. Uspekhi khimii = Achievements of chemistry. 2009; 8: 846–853.
- Zvyagintseva T.N., Shevchenko N.M., Chizhov A.O., Krupnova T.N., Sundukova E.V., Isakov V.V. Water-soluble polysaccharides of some brown seaweeds. Distribution, structure and dependence on the developmental conditions. J. Exp. Marine Biol. Ecol. 2003; 294 (1): 1–13.
- Imbs T.I., Shevchenko N.M., Sukhoverkhov S.V. Influence of season on the composition and structural characteristics of polysaccharides of brown algae. Khimiya prirodn. soedinenii = Chemistry of Natural compounds. 2009; 6: 661–665.
- Viloslada P., Moreno B., Melero I., Pablos J.L., Martino G., Uccelli A., Montalban X., Avila J., Rivest S., Akarin L., Appel S., Khoury S.J., McGeer P., Ferrer I., Delgado M., Obeso J., Schwartz M. Immunotherapy for neurological diseases. Clin. Immunol. 2008; 128: 294–305.
- Watkins L.R., Maier S.F. Glia: a novel drug discovery target for clinical pain. Nat. Rev. Drug Discov. 2003; 2 (12): 973–985.
- Lull M.E., Block M.L. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010; 7 (4): 354–365.
- Brown G.C., Neher J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 2010; 41(2–3): 242–247.
- Zheng L.T., Ryn G.M., Kwon B.M. , Lee W.H., Suk K. Antiinflammatory effects of catechols in LPS-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur. J. Pharmacol. 2008; 588: 106–113.
- Heales S., Bolanos J., Stevart V. , Brookes P., Land J.,Clark J. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta. 1999; 1410: 215–228.
- Block M.L., Zecca L., Hong J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007; 8 (1): 57–69.
- Yun X., Krukoff T.L. Estrogen induces nitric oxide production via activation of constitutive nitric oxide synthases in human neuroblastoma cells. Endocrinology. 2004; 145: 1-22.
- Lee H.R.,Do H., Lee S.R., Sohn E., Pyo S-N., Son E-W. Effects of fucoidan on neuronal сell proliferation assotiation with NO production through the iNOS pathway. J. Food Sci. Nutr. 2007; 12: 74–78.
- Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Ince cco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I., Usov A.I., Ustyushanina N.E., Grachev A.A., Sanderson C.J., Kelly M., Rabinovich G.A., Iakobelli S., Nifantiev N.E. A. comparative study of the antiinflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 2007; 17: 541–552.
- Marques C.T., Azevedo T.C.G., Nascimento M.S. et al. Sulfated fucans extracted from algae Padina gymnospora have anti-inflammatory effect. Rev. Bras. Farmacogn. 2012; 22 (1): 115–122.
- Nelson E.D., Ramberg J.E., Best T., Sinnot R.A. Neurologic effects of exogenous saccharides: a review of controlled human, animal and in vitro studies. Nutr. Neurosci. 2012; 15 (4): 149–162.
- Cui Y.Q., Zhang L.J., Zhang T., Luo D.Z., Jia Y.J., Guo Z.X., Zhang Q.B., Wang X., Wang X.M. Inhibitory effect of fucoidan on nitrit oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 2010; 37: 422–428.
- Do H., Pyo S., Sohn E.H. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IFR-1, and dependents on up-regulation of scavenger receptor B1 expression in TNF-α and IFN-γ-stimulated C6 glioma cells. J. Nutr. Biochem. 2010; 21 (8): 671–679.
- Nakamura T., Suzuki H., Wada Y., Kodama T., Doi T.Fucoidan induces nitric oxide production via p38 mitogen activated protein kinase and NF-kB-dependent signaling pathways through macrophage scavenger receptors. Biochem. Biophys. Res. Commun. 2006; 343: 286–294.
- Park H.Y., Min H.H., Park C., Jin C.Y., Kim G.Y., Choi I.W., Kim N.D., Nam T.J., Kwon T.K., Choi Y.H. Anti-inflammatory effects of fucoidan through inhibition of NF-kB, MAPK and Act activation in LPS-induced BV2 microglial cells. Food Chem. Toxicol. 2011; 49 (8): 1745–1752.
- Rankine P.M.,Huges M.S., Botham V.H., Hughes M.S., Perry V.H., Felton L.M. Brain cytokine synthesis induced by an intraparenchimal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruiment. Eur.J. Neurosci. 2006; 24: 77–86.
- Lynch M.A. The multifaceted profile of activated microglia. Mol. Neurobiol. 2009; 40: 139–156.
- Saito A., Yoneda M., Yokohama S., Okada M., Haneda M., Nakamura K. Fucoidan prevents concanavalin A-induced liver injuru through induction of endogenous IL-10 in mice. Hepatol. Res. 2011; 35: 190–198.
- Kang G.H., Yan B.C., Cho G.S., Kim W.K., Lee C.H., Cho J.H., Kim M., Kang I.J., Won M.H., Lee J.C. Neuroprotective effect of fucoidin on LPS accelerated cerebral ishemic injury through inhibition of cytokine expression and neutrophil infiltration. J. Neurol. Sci. 2012; 15: 25–30.
- Erin A.N., Gulyaeva N.V., Nikushkin E.V. Free radical mechanisms in cerebral pathologies. Byull. eksp. biol. med. – Bulletin experimental biology and medicine. 1994; 10: 343–348.
- Moosman B., Behl C. Antioxidants as treatment for neurodegenerative disorders. Exp. Opin. Investig. Drugs. 2002; 11: 1407–1435.
- Zhou J., Hu N., Pan Y. Preliminary studies on the chemical characterization and antioxidant properties of acid polysaccharides from Sargassum fisiforme. J. Zheiang Univ. Science B. 2008; 9 (9): 721–727.
- Wang X.M., Zhang Q.B., Cui Y.Q. Neuroprotective effect of fucoidan against 6-OHDA-induced damage and its mechanism on MN9D cell line. Chinese J. Neuromed. 2010; 9 (3): 507-521.
- O'Sullivan A.M., O'Cailaghan Y.C., O'Gredy M.N., Queguineur B., Hanniffy D., Troy D.J., Kerri J.P., O’Brien N.M. In vitro and cellular antioxidant activities of seaweed extracts preparated from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry. 2011; 126: 1064–1070.
- Magalhaes K.D., Costa L.S., Fidelis G.P., Cordeiro S.H., Sabry D.A.,, Oliveira R.M., Nobre L.T.D.B., Dantas-Santos N., Camara R.B.G., Albuquerque I.R.L., Cordeiro S.H., Sabry D.A., Costa M.S.S.P., Alves L.G., Rocha L.G. Anticoagulant, antioxidant and antitumor activities of heterofucans from the seaweed Dictiopteris delicatula. Int. J. Mol. Sci. 2011; 12: 3352–3365.
- Costa L.S., Fidelis G.P., Cordeiro S.L., Oliveira R.M., Sabry D.A., Camara R.B.G., Nobre L.T.D.B., Costa M.S.S.P., Almedia-Lima J., Farias E.H.C., Leite E.L., Rocha H.A.O. Biological activities of sulfated polysaccharides from tropical seaweed. Biomed. Pharmacother. 2010; 64: 21–28.
- Zhang Z., Wang X., Liu X., Hou Y., Zhang Q. Extraction of polysaccharides from five alga and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010; 82: 118–121.
- Camara R.B.G., Costa L.S., Fidelis G.P., Nobre L.T., Dantas-Santos N., Cordiro S.L., Costa M.S., Alves L.G., Rocha H.A. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs. 2011; 9 (1): 124–138.
- Costa L.S., Fidelis G.P., Telles C.B.S., Dantas-santos N., Camara R.B., Cordiro S.L., Costa M.S., Almedia-Lima J., Melo-Silveira R.F., Oliveira R.M., Albuquerque I.R., Andrade G.P., Rocha H.A. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar. Drugs. 2011; 9: 952–966.
- Kim S.H., Choi D.S., Athucorala Y.,Jeon Y.J., Senevirathne M., Cho R. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. JFSN. 2007; 12 (2): 65–73.
- Hwang P.A., Wu C.H., Gau S.Y., Chien S-Y., Hwang D-F. Antioxidant and immune-stimulating activities of hotwater extract from seaweed Sargassum hemiphyllum. J. Marine Sci. Technol. 2010; 18 (1): 41–46.
- Peerapompisal Y.D., Jamjai T., Taesotkul Y. et al. Antioxidant and anti-inflammatory activities of brown marine alga Padina mirror Yamada. Chang Mai J. Sci. 2010; 37: 507–516.
- Qi H., Zhang Q., Chen R., Niu X., Li Z. Antioxidant activity of different sulfat content derivates of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 2005; 37: 195–199.
- Ruperez P., Ahrazem O., Leal J.A. Potential antioxidant capacity of sulfated polysaccharides from the adible seaweed Fucus vesiculosis. J. Agric J. Food Chem. 2002; 50: 840–845.
- Akyol O., Herken H., Uz E., fadillioqlu E., Unai S.,, Soquit S., Ozyurt H., Savas H.A. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/ antioxidant imbalance. Progr. Neuro-Psychopharmacol.Biol. Psychiatr. 2002; 26: 995–1005.
- Cho M.L., Kang I.G., Won M.H., Lee H.S., You S.G. The antioxidant properties of ethanol extracts and their solvent partitioned fractions from various green seaweeds. J. Medicinal Food. 2010; 13 (5): 1232–1239.
- Fitton J.H. Therapies from fucoidan. Marine Drug. 2011; 9: 1731–1760.
- Luo D., Zhang Q., Wang H., Cui Y., Sun Z., Yang J., Zheng Y., Jia J., Yu F., Wang X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol. 2009; 617 (1–3): 33–40.
- Gao Y., Yin J., Shen J., Shen J., Wang H., Wu Y., Jin H. Fucoidan, a sulfate polysaccharide from brown algae, improves cognitive impairment induced by infusion Aβ peptide in rats. Environ. Pharmacol. 2012; 33 (2): 304–311.
- Jhamandas J.H., Wie M.B., Harris K., MacTavish D., Kar S. Fucoidan inhibits cellular and neurotoxic effects of β-amyloid in cholinergic basal forebrain neurons. Eur. J. Neurosci. 2005; 21 (10): 2649–2659.
- Mishra S., Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann. Indian Acad. Neurol. 2008; 11 (1): 13–19.
- Bartus R.T. On neurodegenerative diseases, models and treatment strategies: lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000; 163: 495–529.
- Stirk W., Reinecke D., van Staden J. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African Seaweeds. J. Appl. Phycol. 2007; 19: 271–276.
- Yoon N.Y., Lee S.H., Yong L., Kim S.K. Phlorotannins from Ishige okamurae and their acetyl- and bytyrylcholinesterase inhibitory effects. J. Funct. Foods. 2009; 1: 331–335.
- Butterfield D.A. Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Rad. Res. 2002; 36: 1307–1313.
- Ji A., Yao Y., Che O., Wang B., Sun L., Li X., Xu F. Isolation and characterization of sulfated polysaccharide from the Sargassum pallidum (Turn.) and its sedative/hypnotic activity. J. Medicinal Plants Res. 2011; 5 (21): 5240–5246.
- Sun L.S., Li L., Xu J.P. Sedative and hypnotic effect of sulfated polysaccharide from brown seaweed. Chin. J. Clin. Rehabil. 2006; 10: 127–129.
- Matta C.B.B., Souza E.T., Queiroz A.C. Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Mar. Drugs. 2011; 9 (3): 307–318.
- Coura C.O., Arauyo I.V.V., Vanderlei E.S., Quindere A.L., Fontes B.R., Querroz I.N.L., Menezes D.B., Bezerra M.M., Silva A.A.R., Chaves H.V., Jorge R.J.B., Evangelista J.S.A.M., Benevides N.M.B. Antinociceptive and anti-inflammatory activities of sulfated polysaccharides from the red seaweed Gracillaria cornea. Basic Clin. Pharmacol. Toxicol. 2012; 110 (4): 335–341.
- Doh-ura K., Kuge T., Uomoto M., Nishizawa Y., Masahiko I. Prophylactic effect of dietary seaweed fucoidan against enteral prion infection. Antimicrob. Agents Chemother. 2007; 51 (6): 2274–2277.
- Shkundina I.S., Ter-Avanesyan M.D. Prions. Uspekhi biol. khimii – Achievements of biological chemistry. 2006; 46: 3–42.
- Zuev V.A. Prions - a new class of infectious agents. Antibiotiki i khimioterapiya = Antibiotics and chemotherapy. 1999; 10: 33–38.
- Pokrovskiy V.I., Kiselev O.I. Molekulyarnye osnovy prionnyh bolezney. Vestnik RAMN = Bull. of the Russian Academy of Medical Science. 1998; 10: 45–55.
- Pokrovskiy V.I., Kiselev O.I., Cherkasskiy B.L. Priony i prionnye bolezni. M.: RAMN. S. 192–193.
- Ouidja M.O., Petit E., Kerros M.E., Ikeda Y Morin C., Carpentier G., Barritault D., Brugere-Picoux J., Deslys J., Adjou K., Papy-Garcia D..Structure-activity studies of heparin mimetic polyanions for anti-prion therapies. Biochem. Biophys. Res. Commun. 2007; 363 (1): 95–100.
- Horonchik S., Tzaban O., Zaken O.B., Yedidia Y., Papy-Garcia D., Barritault D., Vlodavsky I., Taraboulos A. Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem. 2005; 280: 17062–17067.
- Irhimeh M.R., Fitton J.H., Loventhal R.M., Kongtawelert P. A quantitative method to detect fucoidan in human plasma using a novel antibody. Meth. Find. Exp. Clin. Pharmacol. 2005; 27: 705–710.
- Guimaraes M.A.M., Mourao A.S. Urinary excretion of sulfated polysaccharides administered to Wistar rats suggest a renal permselectivity to these polymers based on molecular size. Biochim. Biophis. Acta. 1997; 1335: 161–172.
- Mabbot N.A., MacPherson G.G. Prions and their lethal journey to the brain. Nat. Rev Microbiol. 2006; 4: 201–211.
- Wang J.Y., Wen L.L., Huang Y.N., Chen Y.T., Ku M.C. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharm. Des. 2006; 12 (27): 3521–3533.
- Rolik I.S. Fetal'nye organopreparaty: klinicheskoe primenenie [Fetal Organic Drugs: Clinical Application]. Moscow, RegBiomed, 2004. 336 p.
- Osipov K.V. The possibility of using high-tech peptide drugs in neurology. Sovremennye naukoemkie tekhnologii = Modern high technologies. 2010; 7: 107–111.