Cover Page

Cite item


Background: Endogenous hypercortisolism due to Cushing’s disease (CD) is complicated by low-traumatic fractures in 50% of cases. Modern technologies allow to study pathogenetic changes in the regulation of bone remodeling in hypercortisolism and to offer new serum biomarkers.

Aims: To evaluate levels of Wnt proteins related to bone remodeling regulation in serum samples from patients with CD.

Materials and methods: Fasting serum samples were taken and stored in aliquot at ≤-80 °C from 42 consecutive subjects with clinically evident and biochemically confirmed active CD and 42 healthy volunteers matched by age, sex and body mass index (BMI). Evaluation of the levels of Wnt proteins (Wnt3a, Wnt10b) was measured by immunochemiluminescence assay using the WNT3a SEL818Hu (USCN) and the WNT10b SEP553Hu (USCN). Twenty-four hours urine free cortisol (24hUFC) (60−413 nmol/24h) and bone turnover markers was measured by electrochemiluminescence assay on a Cobas 6000 Module e601 (Roche). At the time of enrollment all participants were questioned regarding any low traumatic fractures for the period of the disease. Patients underwent standard spinal radiographs in anterior-posterior and lateral positions of the vertebrae Th4−L4 (Axiom Icons R200 Siemens).

Results: The median (Ме Q25; Q75) age of patients with CD was 33 (21; 43) years with no difference among the groups, p=0.936; BMI ― 29 (23; 34) kg/m2, p=0.094 and without differences by sex, p=0.254. The median 24hUFC in subjects with CD ― 825 (301; 2077) nmol/24h was significantly higher as compared to the control group (p<0.001). We report increased levels of Wnt3a and Wnt10b in patients with CD: Wnt3а 0.15 (0.04; 0.23) ng/ml in patients with CD vs 0,04 (0.01; 0.13) ng/ml in control group (p=0.017) and Wnt10b 2621 (2226; 3688) pg/ml vs 1917 (1721; 2549) pg/ml (p=0.008).

Conclusions: The serum level of Wnt3a and Wnt10b reflects the intensity of Wnt-signaling dysregulation, and therefore they may be considered as biomarkers of bone remodeling deterioration in hypercortisolism.

About the authors

T. A. Grebennikova

Endocrinology Research Centre

Author for correspondence.
Email: Grebennikova@hotmail.com
ORCID iD: 0000-0003-1413-1549

Tatiana A. Grebennikova - MD.


Russian Federation

Z. E. Belaya

Endocrinology Research Centre

Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441

Zhanna E. Belaya - MD, PhD.


Russian Federation

A. G. Solodovnikov

Ural State Medical Academy

Email: dr.alexander.solodovnikov@gmail.com
ORCID iD: 0000-0002-4564-2168

Alexander G. Solodovnikov.


Russian Federation

A. V. Ilyin

Medical Center FertiLab

Email: biochem@endocrincentr.ru
ORCID iD: 0000-0002-3259-4443

Alexander V. Ilyin - MD.


Russian Federation

L. V. Nikankina

Endocrinology Research Centre

Email: larisanikan@rambler.ru
ORCID iD: 0000-0001-8303-3825

Larisa V. Nikankina - MD.


Russian Federation

G. A. Melnichenko

Endocrinology Research Centre

Email: teofrast2000@mail.ru
ORCID iD: 0000-0002-5634-7877

Galina A. Melnichenko - MD, PhD, Professor.


Russian Federation


  1. Kanis JA, Johansson H, Oden A, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–899. doi: 10.1359/JBMR.040134.
  2. Belaya ZE, Hans D, Rozhinskaya LY, et al. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch Osteoporos. 2015;10:44. doi: 10.1007/s11657-015-0244-1.
  3. Guanabens N, Gifre L, Peris P. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr Osteoporos Rep. 2014;12(1):90–97. doi: 10.1007/s11914-014-0197-0.
  4. Zhang Z, Ren H, Shen G, et al. Animal models for glucocorticoid-induced postmenopausal osteoporosis: an updated review. Biomed Pharmacother. 2016;84:438–446. doi: 10.1016/j.biopha.2016.09.045.
  5. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–1328. doi: 10.1007/s00198-007-0394-0.
  6. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526–1540. doi: 10.1210/jc.2008-0125.
  7. Belaya ZE, Iljin AV, Melnichenko GA, et al. Diagnostic performance of osteocalcin measurements in patients with endogenous Cushing’s syndrome. Bonekey Rep. 2016;5:815. doi: 10.1038/bonekey.2016.42.
  8. Бровкина О.И., Белая Ж.Е., Гребенникова Т.А., и др. Экспрессия генов, регулирующих остеогенез в костной ткани пациентов с акромегалией и эндогенным гиперкортицизмом // Генетика. ― 2017. ― Т.53. ― №8 ― С. 981−987. doi: 10.7868/S0016675817070025.
  9. Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol. 2010;6(2):82–88. doi: 10.1038/nrrheum.2009.259.
  10. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–532. doi: 10.1038/nrd4233.
  11. van Amerongen R, Mikels A, Nusse R. Alternative Wnt signaling is initiated by distinct receptors. Sci Signal. 2008;1(35):re9. doi: 10.1126/scisignal.135re9.
  12. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4(4):e115. doi: 10.1371/journal.pbio.0040115.
  13. Almeida M, Han L, Bellido T, et al. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem. 2005;280(50):41342–41351. doi: 10.1074/jbc.M502168200.
  14. Belaya ZE, Grebennikova TA, Melnichenko GA, et al. Effects of endogenous hypercortisolism on bone mRNA and microRNA expression in humans. Osteoporos Int. 2018;29(1):211–221. doi: 10.1007/s00198-017-4241-7.
  15. Yao W, Cheng Z, Busse C, et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 2008;58(6):1674–1686. doi: 10.1002/art.23454.
  16. Мельниченко Г.А., Дедов И.И., Белая Ж.Е., и др. Болезнь Иценко-Кушинга: клиника, диагностика, дифференциальная диагностика, методы лечения // Проблемы эндокринологии. ― 2015. ― Т.61. ― №2 ― С. 55−77. doi: 10.14341/probl201561255-77.
  17. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 2009;8(9):1137–1148. doi: 10.1002/jbmr.5650080915.
  18. Gennari L, Merlotti D, Valenti R, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97(5):1737–1744. doi: 10.1210/jc.2011-2958.
  19. Polyzos SA, Anastasilakis AD, Bratengeier C, et al. Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women — the six-month effect of risedronate and teriparatide. Osteoporos Int. 2012;23(3):1171–1176. doi: 10.1007/s00198-010-1525-6.
  20. Ardawi MS, Al-Sibiany AM, Bakhsh TM, et al. Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int. 2012;23(6):1789–1797. doi: 10.1007/s00198-011-1806-8.
  21. Belaya ZE, Rozhinskaya LY, Melnichenko GA, et al. Serum extracellular secreted antagonists of the canonical Wnt/beta-catenin signaling pathway in patients with Cushing’s syndrome. Osteoporos Int. 2013;24(8):2191-2199. doi: 10.1007/s00198-013-2268-y.
  22. Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford). 2016;55(10):1714–1725. doi: 10.1093/rheumatology/kev410.
  23. Гребенникова T.А., Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. Канонический Wnt/β-катенин сигнальный путь: от истории открытия до путей клинического применения // Терапевтический архив. ― 2016. ― Т.88. ― №10 ― С. 74–81. doi: 10.17116/terarkh201688674-81.
  24. Brabnikova Maresova K, Pavelka K, Stepan JJ. Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcif Tissue Int. 2013;92(4):354–361. doi: 10.1007/s00223-012-9684-4.
  25. Constantinou T, Baumann F, Lacher MD, et al. SFRP-4 abrogates Wnt-3a-induced beta-catenin and Akt/PKB signalling and reverses a Wnt-3a-imposed inhibition of in vitro mammary differentiation. J Mol Signal. 2008;3:10. doi: 10.1186/1750-2187-3-10.
  26. Spencer GJ. Wnt signalling in osteoblasts regulates expression of the receptor activator of NF B ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119(7):1283–1296. doi: 10.1242/jcs.02883.

Copyright (c) 2018 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies