GENOMIC ANALYSIS OF FOOD-BORNE STAPHYLOCOCCUS AUREUSCC30 STRAINS IN THE RUSSIAN FEDERATION

Cover Page

Abstract


 

Staphylococcus aureus clonal complex (СС) 30 are associated with hospital-acquired and community-associated invasive infections and may cause outbreaks of staphylococcal food-borne infections (SFI).  In recent years, severe SFI outbreaks caused by S. aureus CC30 in cohorts not linked to high-risk groups have been detected in Russia.

Aim: The aim of the study is to conduct a comparative genomic analysis of S. aureus strains B-7778 and B-7779 isolated during widespread SFI outbreak at the International Youth Forum Seliger in 2014, and S. aureus strains B-7738 and B-7739 isolated during widespread SFI outbreak among construction personnel in Saint Petersburg in 2013.

Methods: Seliger-2014 S. aureus cultures were screened by PCR and sequence typing. S. aureus strains B-7778 and B-7779 were isolated from clinic material and from food handlers, respectively. Draft genome sequencing and phylogenetic analysis of S. aureus strains B-7778 and B-7779 were carried out. The production of enterotoxin A was determined by the enzyme immunoassay.

Results: S. aureus strain B-7778 isolated from 38 patients and S. aureus strain B-7779 isolated from two food handlers at the Forum Seliger-2014 have identical nucleotide sequences, belong to spa-type t122 and sequence-type 30, and carry a set of toxin genes being responsible for SFI manifestations. The core-genome SNP typing has shown that S. aureus B-7738/ B-7739 (St. Petersburg, 2013) and S. aureus B-7778/ B-7779 (Seliger, 2014) belong to different clusters of S. aureus СС30 clade 3. S. aureus B-7778/ B-7779 not closely related with major clusters of S. aureus СС30. The production of enterotoxin A, SFI etiological factor, by S. aureus strains B-7738, B-7739, B-7778, and B-7779 has been confirmed.

Conclusion: The genomic analysis of SFI-associated S. aureus strains isolated in Russia has been conducted for the first time. Two different genetic clones of S. aureus СС30 which are able to cause severe SFI outbreaks in cohorts not linked to high-risk groups have been identified and characterized. SNP typing of Seliger-2014 S. aureus genomes has revealed their genetic specificity among known strains of S. aureus CC30. Identified genome sequences of SFI-associated strains will be used for further studies S. aureus clones circulating through the food chain in Russia.


I. V. Abaev

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Author for correspondence.
Email: abaev@obolensk.org
ORCID iD: 0000-0003-2724-557X

Russian Federation

Obolensk

Yu. P. Skryabin

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: sjurikp@gmail.com
ORCID iD: 0000-0001-5748-995X

Russian Federation

Obolensk

A. A. Kislichkina

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: angelinakislichkina@yandex.ru
ORCID iD: 0000-0001-8389-2494

Russian Federation

Obolensk

O. V. Korobova

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: o.v.korobova@yandex.ru
ORCID iD: 0000-0002-7068-3236

Russian Federation

Obolensk

I. P. Mitsevich

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: mitzevich_i_p@obolensk.org
ORCID iD: 0000-0003-2324-502X

Russian Federation

Obolensk

T. N. Mukhina

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: cecile98@rambler.ru
ORCID iD: 0000-0001-5829-0512

Russian Federation

Obolensk

A. G. Bogun

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: bogun62@mail.ru
ORCID iD: 0000-0001-5454-2495

Russian Federation

Obolensk

I. A. Dyatlov

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Email: dyatlov@obolensk.org
ORCID iD: 0000-0003-1078-4585

Russian Federation

Obolensk

  1. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629–641. doi: 10.1038/nrmicro2200.
  2. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureusand staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014;2014:827965. doi: 10.1155/2014/827965.
  3. Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000;61(1):1–10. doi: 10.1016/S0168-1605(00)00377-9.
  4. Argudín MÁ, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel). 2010;2(7):1751–1773. doi: 10.3390/toxins2071751.
  5. Murray RJ. Recognition and management of Staphylococcus aureus toxin-mediated disease. Intern Med J. 2005;35 Suppl 2:S106–119. doi: 10.1111/j.1444-0903.2005.00984.x.
  6. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2015. EFSA Journal. 2016;14(12):e04634. doi: 10.2903/j.efsa.2016.4634.
  7. Sato’o Y, Omoe K, Naito I, et al. Molecular epidemiology and identification of a Staphylococcus aureus clone causing food poisoning outbreaks in Japan. J Clin Microbiol. 2014;52(7):2637–2640. doi: 10.1128/Jcm.00661-14.
  8. Nienaber JJ, Sharma Kuinkel BK, Clarke-Pearson M, et al. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis. 2011;204(5):704–713. doi: 10.1093/infdis/jir389.
  9. McGavin MJ, Arsic B, Nickerson NN. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30. Front Cell Infect Microbiol. 2012;2:48. doi: 10.3389/fcimb.2012.00048.
  10. Онищенко Г.Г., Абаев И.В., Дятлов И.А., и др. Молекулярно-генетическая идентификация штамма Staphylococcus aureus ― возбудителя пищевой токсикоинфекции при вспышке в Санкт-Петербурге в 2013 г. // Вестник Российской академии наук. ― 2014. ― Т. 69. ― №9–10 ― С. 33–38. [Onishchenko GG, Abaev IV, Dyatlov IA, et al. Molecular genetic identification of Staphylococcus aureus strain, caused a foodborne illness outbreak in St. Petersburg in 2013. Annals of the Russian academy of medical sciences. 2014;69(9−10):33−38. (In Russ).] doi: 10.15690/vramn.v69i9-10.1129.
  11. Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol. 2000;38(3):1032–1035.
  12. Xie Y, He Y, Gehring A, et al. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One. 2011;6(12):e28276. doi: 10.1371/journal.pone.0028276.
  13. Takano T, Higuchi W, Zaraket H, et al. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother. 2008;52(3):837–845. doi: 10.1128/AAC.01001-07.
  14. Tang JN, Chen J, Li HH, et al. Characterization of adhesin genes, staphylococcal nuclease, hemolysis, and biofilm formation among Staphylococcus aureus strains isolated from different sources. Foodborne Pathog Dis. 2013;10(9):757–763. doi: 10.1089/fpd.2012.1474.
  15. Hookey JV, Richardson JF, Cookson BD. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol. 1998;36(4):1083–1089.
  16. Метод определения стафилококковых энтеротоксинов в пищевых продуктах. Методические указания МУК 4.2.2429-08. — М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора; 2009. — 18 с. [Metod opredeleniya stafilokokkovykh enterotoksinov vpishchevykh produktakh. Metodicheskie ukazaniya MUK 4.2.2429-08. Moscow: Federal’nyi tsentr gigieny i epidemiologii Rospotrebnadzora; 2009. 18 p.(In Russ).]
  17. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001;Chapter 2:Unit 2.4. doi: 10.1002/0471142727.mb0204s56.
  18. Angiuoli SV, Gussman A, Klimke W, et al. Toward an online repository of Standard Operating Procedures (SOPs) for (Meta) genomic annotation. OMICS. 2008;12(2):137–141. doi: 10.1089/omi.2008.0017.
  19. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics. 2013;14:60. doi: 10.1186/1471-2105-14-60.
  20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054.
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454.
  22. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101(30):11030–11035. doi: 10.1073/pnas.0404206101.
  23. Fowler VG, Nelson CL, McIntyre LM, et al. Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis. 2007;196(5):738–747. doi: 10.1086/520088.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 26

PDF (Russian) - 17

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies