Effects of the Airway Obstruction on the Skin Microcirculation in Patients with Bronchial Asthma

Cover Page


Cite item

Full Text

Abstract

BackgroundPulmonary hemodynamic disorders depend on the inflammatory phases and severity of the obstructive syndrome. However, the effect of asthma bronchial obstruction on the state of peripheral hemodynamics remains insufficiently known. 

Aims: To study the effects of airway obstruction on skin blood flow parameters and its regulatory systems in patients with persistent atopic bronchial asthma in the remission state.

Materials and methods: A comparative study of the skin peripheral blood flow in patients with bronchial asthma with severe airway obstruction (1st group) and without obstruction (2nd group) was conducted. 20 patients with confirmed diagnosis of atopic asthma of 50–74 years old participated in the study. All patients received basic therapy in a constant dosing of high doses of inhaled glucocorticosteroids/long-acting beta-2-agonists. The control group included 20 healthy volunteers without evidence of bronchial obstruction. The study lasted for 3 months. The forced expiratory volume in 1 s (FEV1) was used to evaluate the bronchial obstruction by spirometry technique. Skin blood perfusion changes were recorded by laser Doppler flowmetry at rest and in response to short-term local ischemia. Registered peripheral blood flow signals were examined using the amplitude temporal filtering in five frequency intervals to identify the functional features of the peripheral blood flow regulation systems. 

ResultsConsistent two-fold decrease of the oscillation amplitudes was found in the neurogenic interval at rest (p=0.031), as well as in the myogenic (p=0.043; p=0.031) and endothelial intervals (p=0.037; p≤0.001) both at rest and during the postocclusive reactive hyperemia respectively in the 1st group of patients with bronchial obstruction (FEV1 <80%) compared with the control group. No significant changes were revealed for skin blood flow parameters in the 2nd patient group (without obstruction, FEV>80%) in comparison to control subjects.

Conclusions: The presence of bronchial obstruction has a significant impact on the changes of the amplitudes of skin blood flow oscillations in patients with bronchial asthma in the myogenic, neurogenic and endothelial intervals.

About the authors

Irina V. Tikhonova

Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino

Email: irinka_ti27@mail.ru

кандидат биологических наук, научный сотрудник лаборатории клеточной нейробиологии Института биофизики клетки РАН

 

Адрес: 142290, Московская область, г. Пущино, ул. Институтская, д. 3, тел.: +7 (496) 773-91-98,

Russian Federation

N. I. Kosyakova

Hospital of Pushchino Scientific Center of the Russian Academy of Sciences, Pushchino

Author for correspondence.
Email: nelia_kosiakova@mail.ru

Доктор медицинских наук, заместитель главного врача по научной работе, заведующая отделением иммунологии и аллергологии Больницы

 

Адрес: 142290, Московская область, г. Пущино, ул. Институтская, д. 3

Russian Federation

A. V. Tankanag

Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino

Email: tav@icb.psn.ru

Кандидат биологических наук, ведущий научный сотрудник лаборатории клеточной нейробиологии

Адрес: 142290, Московская область, г. Пущино, ул. Институтская, д. 3

Russian Federation

N. K. Chemeris

Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino

Email: nkc@inbox.ru

Доктор биологических наук, профессор, главный научный сотрудник лаборатории клеточной нейробиологии 

Адрес: 142290, Московская область, г. Пущино, ул. Институтская, д. 3

Russian Federation

References

  1. Barnes PJ. Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol. 2012;129(1):48–59. doi: 10.1016/j.jaci.2011.11.006.
  2. ginasthma.org [Internet]. Global Initiative for Asthma (GINA). 2016 GINA Global Strategy for Asthma Management and Prevention [cited 2016 Mar 10]. Available from: http://www.ginasthma.org.
  3. Ходюшина И.Н., Урясьев О.М. Изменения показателей гемодинамики у больных бронхиальной астмой // Российский медико-биологический вестник им. акад. И.П. Павлова. — 2011. — №2. — С. 22. [Khodyushina IN, Uryasyev OM. Сhanges of hemodynamics in the patients bronchial asthma. Rossiiskii mediko-biologicheskii vestnik imeni akademika I.P. Pavlova. 2011;(2):22. (In Russ).]
  4. Чучалин А.Г. Бронхиальная астма: новые перспективы в терапии // Терапевтический архив. — 2012. — Т.84. — №3. — С. 5–11. [Chuchalin AG. Bronchial asthma: new prospects in therapy. Ter Arkh. 2012;84(3):5–11. (In Russ).]
  5. Kumar SD, Emery MJ, Atkins ND, et al. Airway mucosal blood flow in bronchial asthma. Am J Respir Crit Care Med. 1998;158(1):153–156. doi: 10.1164/ajrccm.158.1.9712141.
  6. Li X, Wilson JW. Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med. 1997;156(1):229–233. doi: 10.1164/ajrccm.156.1.9607066.
  7. Zanini A, Chetta A, Imperatori AS, et al. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res. 2010;11(1):132. doi: 10.1186/1465-9921-11-132.
  8. Roustit M, Cracowski JL. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci. 2013;34(7):373–384. doi: 10.1016/j.tips.2013.05.007.
  9. Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol (1985). 2008;105(1):370–372. doi: 10.1152/japplphysiol.00858.2007.
  10. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
  11. Tankanag AV, Chemeris NK. A method of adaptive wavelet filtering of the peripheral blood flow oscillations under stationary and non-stationary conditions. Phys Med Biol. 2009;54(19):5935–5948. doi: 10.1088/0031-9155/54/19/018.
  12. Tikhonova IV, Tankanag AV, Chemeris NK. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Microvasc Res. 2010;80(1):58–64. doi: 10.1016/j.mvr.2010.03.010.
  13. Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng. 1999;46(10):1230–1239. doi: 10.1109/10.790500.
  14. Hashimoto M, Tanaka H, Abe S. Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD. Chest. 2005;127(3):965–972. doi: 10.1378/chest.127.3.965.
  15. Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax. 2001;56(12):902–906. doi: 10.1136/thorax.56.12.902.
  16. National Institutes of Health; National Heart, Lung, and Blood Institute. Guidelines for the Diagnosis and Management of Asthma. Expert panel report 2. NIH Publication; 1997. 148 p.
  17. Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol. 2011;128(3):451–462. doi: 10.1016/j.jaci.2011.04.047.
  18. Mak A, Kow NY. Imbalance between endothelial damage and repair: a gateway to cardiovascular disease in systemic lupus erythematosus. Biomed Res Int. 2014;2014:178721. doi: 10.1155/2014/178721.
  19. Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014;306(3):317–325. doi: 10.1152/ajpheart.00182.2013.
  20. Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res. 1999;19(2):91–104. doi: 10.1089/107999099314234.
  21. Brieva JL, Danta I, Wanner A. Effect of an inhaled glucocorticosteroid on airway mucosal blood flow in mild asthma. Am J Respir Crit Care Med. 2000;161(1):293–296. doi: 10.1164/ajrccm.161.1.9905068.
  22. Brieva J, Wanner A. Adrenergic airway vascular smooth muscle responsiveness in healthy and asthmatic subjects. J Appl Physiol (1985). 2001;90(2):665–669.
  23. Wanner A, Mendes ES. Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease: a challenge for future research. Am J Respir Crit Care Med. 2010;182(11):1344–1351. doi: 10.1164/rccm.201001-0038PP.
  24. Canning BJ, Woo A, Mazzone SB. Neuronal modulation of airway and vascular tone and their influence on nonspecific airways responsiveness in asthma. J Allergy (Cairo). 2012;2012:108149. doi: 10.1155/2012/108149.
  25. Mitchell RW, Ruhlmann E, Magnussen H, et al. Passive sensitization of human bronchi augments smooth muscle shortening velocity and capacity. Am J Physiol. 1994;267(2 Pt 1):L218–222.
  26. Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation. 2013;20(3):217–238. doi: 10.1111/micc.12035.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies