Changes of the Immunophenotypic Spectrum and the Enzymatic Profile of Peripheral Blood Lymphocytes in Infants with Hypertrophy of the Pharyngeal Tonsil

Cover Page

Abstract


Objective: to study immunophenotype and NAD- and NAD(P)-dependent dehydrogenase of blood lymphocytes activity indicators in children with hypertrophy of the pharyngeal tonsils (HPT).

Methods: 57 children aged 1–3 years with HPT were examined. The focus group included 35 healthy children of the similar age. The number of СD3+-, СD4+-, СD8+-, СD16+/56+-, СD19+-cells in the blood was determined by flow cytometry. The activity of NAD(P)-dependent dehydrogenase was studied by the method of A. Savchenko and coauth. (1989).

Results: The changes of immunophenotypic spectrum of peripheral blood lymphocytes in infants with HPT have been revealed. The increase of ribose-5-phosphate and NADN-dependent reactions of macromolecular synthesis, the reduction of malataspartat shunt role in cell energy, the reduction of anaerobic lactate dehydrogenase reaction, the compensatory increase in the glycerol-3-phosphate dehydrogenase activity, the high substrate flow of the citric acid cycle and the reduced level of glutathione have been fixed. The correlation analysis has showed increase in the number of correlations between indicators of investigated oxidoreductase activity in blood lymphocytes in children with HPT and the high level of correlation between the metabolic reactions of the mitochondrial compartment.

Conclusion: the change of immunophenotype, enzymatic activity, correlation pattern of connection between intracellular enzymes of peripheral blood lymphocytes have been revealed in children aged 1–3 years with HPT.


Lyudmila Mikhaylovna Kurtasova

Krasnoyarsk State Medical University; Krasnoyarsk Regional Center for Prevention and Control of AIDS

Author for correspondence.
Email: sibmed-obozrenie@yandex.ru

Russian Federation MD, PhD, Professor

Natal'ya Aleksandrovna Shakina

Krasnoyarsk Regional Center for Prevention and Control of AIDS

Email: imunolog@aids.krsn.ru

Russian Federation MD, PhD

Tat'yana Viktorovna Lubnina

Krasnoyarsk Regional Center for Prevention and Control of AIDS

Email: Lubnina@aids.krsn.ru

Russian Federation MD, PhD

Anna Igorevna Nikolaeva

Krasnoyarsk State Medical University

Email: annanikolaevalor@mail.ru

Russian Federation MD, PhD

  1. Калинин ДВ, Быкова ВП. Гистоархитектоника глоточной миндалины в возрастном аспекте. Морфометрическое и иммуногистохимическое исследование. Архив патологии. 2011;1:14–18.
  2. Богомильский МР. Аденоиды. Вестник оториноларингологии. 2013;3:61–64.
  3. Бениова СН, Таранова СВ, Бабко СВ. Клинико-иммунологические особенности хронических заболеваний назально-ассоциированной лимфоидной ткани у детей. Вестник оториноларингологии. 2014;4:36–38.
  4. Терскова НВ, Николаева АИ, Вахрушев СГ, Смбатян АС. Загрязнение атмосферного воздуха как фактор риска гипертрофии глоточной миндалины Сибирское медицинское обозрение. 2013;5:59–64.
  5. Азнабаева ЛФ. Иммунологические аспекты воспаления верхних дыхательных путей. Вестник оториноларингологии. 2012;3:23–26.
  6. Бесшапочный СБ, Гасюк ЮА, Лобурец ВВ, Вахнина АБ. Механизмы местной защиты слизистой оболочки полости носа и околоносовых пазух. Вестник оториноларингологии. 2013;4:44–47.
  7. Boyum A. Isolation and removal of lymphocytes from bone marrow of rats and guinea-pigs. Scand J Clin Lab Invest Suppl. 1968;97:91–106.
  8. Савченко АА, Сунцова ЛН. Высокочувствительное определение активности дегидрогеназ в лимфоцитах периферической крови биолюминесцентным методом. Лабораторное дело. 1989;11:23–25.
  9. Norris MG, Malys N. What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose 6-phosphate dehydrogenase. Biochem Biophys Res Commun. 2011;405(3):388–392. doi: 10.1016/j.bbrc.2011.01.037.
  10. Tandogan B, Sengezer C, Ulusu NN. In vitro effects of imatinib on glucose-6-phosphate dehydrogenase and glutathione reductase. Folia Biol (Praha). 2011;57(2):57–64.
  11. Stanton RC. Glucose 6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64(5):362–369. doi: 10.1002/iub.1017.
  12. de la Roche M, Tessier SN, Storey KB. Structural and functional properties of glycerol 3-phosphate dehydrogenase from a mammalian hibernator. Protein J. 2012;31(2):109–119. doi: 10.1007/s10930-011-9376-3.
  13. Hsieh JY, Chen SH, Hung HC. Functional roles of the tetramer organization of malic enzyme. J Biol Chem. 2009;284(27):18096–18105. doi: 10.1074/jbc.M109.005082.
  14. Abbrescia DI, La Piana G, Lofrumento NE. Malate aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. Arch Biochem Biophys. 2012;518(2):157–163. doi: 10.1016/j.abb.2011.12.021.
  15. Lu M, Banerjee S, Saidel GM, Yu X. Regulation of cytosolic and mitochondrial oxidation via malate aspartate shuttle: an observation using dynamic (1) (3) C NMR spectroscopy. Adv Exp Med Biol. 2011;701:185–192. doi: 10.1007/978-1-4419-7756-4-25.
  16. Pallardo FV, Markovic J, Garcia JL, Vina J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med. 2009;30(1–2):77–85. doi: 10.1016/j.mam.2009.01.001.
  17. Куртасова ЛМ, Савченко АА, Манчук ВТ. Метаболические аспекты иммунореабилитации детей с атопическими заболеваниями. Новосибирск: Наука. 2006. 222 c.

Views

Abstract - 21

PDF (Russian) - 4

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.