Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System

Cover Page


Cite item

Full Text

Abstract

The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The presence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymus peptides and/or cytokines, controlled by them, enter the brain and exert influence on neuronal function, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.

About the authors

Tat'yana Ivanovna Torkhovskaya

Research Institute of Physico-Chemical Medicine; V.N. Orehovich Research Institute of Biomedical Chemistry

Author for correspondence.
Email: torti@mail.ru
MD, PhD, Россия

Ol'ga Vladimirovna Belova

Research Institute of Physico-Chemical Medicine

Email: olgabelova49@yandex.ru
PhD Россия

Irina Vasil'evna Zimina

Research Institute of Physico-Chemical Medicine

Email: Yangicher@yandex.ru
PhD Россия

Alina Viktorovna Kryuchkova

Research Institute of Physico-Chemical Medicine

Email: likkavolkhova@mail.ru
младший научный сотрудник ФГБУН НИИ ФХМ ФМБА Россия

Svetlana Nikolaevna Moskvina

Research Institute of Physico-Chemical Medicine

Email: kasya45@yandex.ru
PhD Россия

Ol'ga Vital'evna Bystrova

Russian University of Peoples' Friendship

Email: bystrova110@yandex.ru
PhD Россия

Vitaliy Yakovlevich Arion

Research Institute of Physico-Chemical Medicine

Email: VYaarion@yandex.ru
PhD, Professor Россия

Valeriy Ivanovich Sergienko

Research Institute of Physico-Chemical Medicine

Email: olgabelova49@yandex.ru
MD, PhD, Professor Россия

References

  1. Thyagarajan S., Priyanka H.P. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Annals of Neurosciences. 2012; 19(1):40–46. doi: 10.5214/ans.0972.7531.180410
  2. Захарова ЛА. Пластичность нейроэндокринной и иммунной систем в раннем развитии. Известия РАН. 2014;5:437–447.
  3. Demas GE, Carlton ED. Ecoimmunology for psychoneuroimmunologists: Considering context in neuroendocrine-immune-behavior interactions. Brain Behav Immun. 2015;44:9–16. doi: 10.1016/j.bbi.2014.09.002
  4. Geenen V. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems. Acta Clin. Belg. 2012;7(3):209–213. doi: 10.2143/ACB.67.3.2062657
  5. Csaba G. The pineal regulation of the immune system: 40 years since the discovery. Acta Microbiol Immunol Hung. 2013;60(2):77–91. doi: 10.1556/AMicr.60.2013.2.1
  6. Магаева СВ, Морозов СГ, Грибова ИЕ. Психонейроиммунология как область психосоматики. Нейроиммунология. 2006;IV(3–4):4–15.
  7. Lassmann H. CNS neuroimmunology seen by a neuropathologist. Rev Neurol (Paris). 2014;170(10):561–563. doi: 10.1016/j.neurol.2014.07.001
  8. Geenen V, Bodart G, Henry S, Michaux H, Dardenne O, Charlet-Renard C, Martens H, Hober D. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosci. 2013;7:187. doi: 10.3389/fnins.2013.00187
  9. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211(2):144–156. doi: 10.1002/path.2104
  10. Pilipović I, Radojević K, Kosec D, Nanut MP, Stojić-Vukanić Z, Arsenović-Ranin N, Leposavić G. Gonadal hormone dependent developmental plasticity of catecholamine: β2-adrenoceptor signaling complex in male rat thymus: putative implications for thymopoiesis. J Neuroimmunol. 2013;265(1–2):20–35. doi: 10.1016/j.jneuroim.2013.09.021
  11. Mignini F, Sabbatini M, Mattioli L, Cosenza M, Artico M, Cavallotti C. Neuroimmune modulation of the thymus microenvironment. Int J Mol Med. 2014;33(6):1392–1400. doi: 10.3892/ijmm.2014.1709
  12. Гусельникова ВВ, Сухорукова ЕГ, Федорова ЕА, Полевщиков АВ, Коржевский ДЭ. Метод одновременного выявления тучных клеток и нервных терминалей в тимусе у лабораторных млекопитающих. Морфология. 2014;145(2):70–73.
  13. Madden KS. Catecholamines, sympathetic innervation, and immunity. Brain Behav Immun. 2003;17(Suppl.1):S5–S10. doi: 10.1016/S0889-1591(02)00059-4
  14. Bilbo SD. Frank A. Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav. 2013;63(5):684–691. doi: 10.1016/j.yhbeh.2013.02.017
  15. Silva AB, Palmer DB. Evidence of conserved neuroendocrine interactions in the thymus: intrathymic expression of neuropeptides in mammalian and non-mammalian vertebrates. Neuroimmunomodulation. 2011;18(5):264–270. doi: 10.1159/000329493
  16. Диагностика и лечение нейроэндокринных заболеваний. Под ред. ИИ Дедова. М.: Адамант. 2003. 56 с.
  17. Ban E, Gagnerault MC, Jammes H, Postel-Vinay MC, Haour F, Dardenne M. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci. 1991;48:2141–2148. doi: 10.1016/0024-3205(91)90147-4
  18. Triggianese P, Perricone C, Perricone R, De Carolis C. Prolactin and natural killer cells: evaluating the neuroendocrine-immune axis in women with primary infertility and recurrent spontaneous abortion. Am J Reprod Immunol. 2015;73(1):56–65. doi: 10.1111/aji.12335
  19. Reggiani PC, Schwerdt JI, Console GM, Roggero EA, Dardenne M, Goya RG. Physiology and Therapeutic Potential of the Thymic Peptide Thymulin. Curr Pharm Des. 2014;20(29):4690–4696. doi: 10.2174/1381612820666140130211157
  20. Bodey B. Thymic reticulo-epithelial cells key cells of neuroendocrine regulation. Expert Opinion on Biological Therapy. 2007;7(7):939–949 doi: 10.1517/14712598.7.7.939
  21. Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schäfer MK, Schedlowski M, del Rey A. The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun. 2014;38:100–110. doi: 10.1016/j.bbi.2014.01.007
  22. Savino W. Intrathymic T cell migration is a multivectorial process under a complex neuroendocrine control. Neuroimmunomodulation. 2010;17(3):142–145. doi: 10.1159/000258708
  23. Savino W, Postel-Vinay MC, Smaniotto S, Dardenne M. The thymus gland: a target organ for growth hormone. Scand J Immunol. 2002;5(5):442–452. doi: 10.1046/j.1365-3083.2002.01077.x
  24. Marković L. [Interaction involving the thymus and the hypothalamus-pituitary axis, immunomodulation by hormones]. Srp Arh Celok Lek (Serb.). 2004;32(5–6):187–193. doi: 10.2298/SARH0406187M
  25. Dimitrijevic M, Stanojevic S, Kustrimovic N, Leposavic G. End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology. Immunol Res. 2012;52(1–2):64–80. doi: 10.1007/s12026-012-8275-9
  26. Nishiyama N. Thymectomy induced deterioration of learning and memory. Cell Mol Biol (Noisy-le-grand). 2001;47(1):161–165.
  27. Song C. The effect of thymectomy and IL-1 on memory: implications for the relationship between immunity and depression. Brain Behav Immun. 2002;16(5):557–568. doi: 10.1016/S0889-1591(02)00012-0
  28. Saito H, Nishiyama N, Zhang Y, Abe Y. Learning disorders in thymectomized mice: a new screening model for cognitive enhancer. J Behav Brain Res. 1997;83(1–2):63–69 doi: 10.1016/S0166-4328(97)86047-0
  29. Новоселецкая АВ, Киселева НМ, Иноземцев АН, Белова ОВ, Зимина ИВ, Арион ВЯ. Тактивин и тимулин ускоряют процесс обучения и памяти после тимэктомии. Здоровье и образование в XXI веке. 2013;15(1–4):51–52.
  30. Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol. 2014;88(9):4698–4710. doi: 10.1128/JVI.03149–13
  31. Reggiani PC, Martines EV, Camihort GA, Poch B, Goya RG, Cónsole GM. Role of thymulin on the somatotropic axis in vivo. Life Sci. 2012;91(5–6):166–171. doi: 10.1016/j.lfs.2012.06.037
  32. Akiyama T, Qin J, Ohshima D, Inoue J. Identification of transcription factors activated in thymic epithelial cells during embryonic thymus development. Methods Mol Biol. 2014;1164:163–170. doi: 10.1007/978-1-4939-0805-9_13
  33. Reggiani PC, Morel GR, Console GM, Barbeito CG, Rodriguez SS, Brown OA, Bellini MJ, Pléau JM, Dardenne M, Goya RG. The thymus-neuroendocrine axis: physiology, molecular biology, and therapeutic potential of the thymic peptide thymulin. Ann NY Acad Sci. 2009;1153:98–106. doi: 10.1111/j.1749-6632.2008.03964.x.
  34. Hinojosa L, García L, Domínguez R, Romano MC, Damin-Matsumura PG, Castillo L, Rosas P. Effects of thymulin and GnRH on the release of gonadotropins by in vitropituitary cells obtained from rats in each day of estrous cycle. Life Sci. 2004;76:795–804. doi: 10.1016/j.lfs.2004.07.017
  35. Safieh-Garabedian B, Ochoa-Chaar CI, Poole S, Massaad CA, Atweh SF, Jabbur SJ, Saadé NE. Thymulin reverses inflammatory hyperalgesia and modulates the increased concentrationn of proinflammatory cytokines induced by ICV endotoxin injection. Neuroscience. 2003;121:865–873. doi: 10.1016/S0306-4522(03)00500-1
  36. Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG. Thymosin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neuroscience. 2010;169(2):674–182. doi: 10.1016/j.neuroscience.2010.05.017
  37. Turrini P, Aloe L. Evidence that endogenous thymosin alpha-1 is present in the rat central nervous system. Neurochem Int. 1999;35(6):463–470. doi: 10.1016/S0197-0186(99)00084-4
  38. Covelli V, Munno I, Altamura M, Decandia P, Pellegrino NM, Marcuccio C, Caradonna L, Jirillo E. Role of thymic hormones in neuroimmunomodulation. Their use in patients with phobic disorders. Acta Neurol (Napoli). 1991;13(5):457–466.
  39. Новоселецкая АВ, Киселева НМ, Зимина ИВ, Белова ОВ, Иноземцев АН, Арион ВЯ, Сергиенко ВИ. Стресспротективный эффект пептидов тимуса. Бюллетень экспериментальной биологии и медицины. 2014;23:715–718.
  40. Иноземцев АН, Новоселецкая АВ, Матвеева ОД, Аристова ВВ, Калюжный АЛ, Шульговский ВВ, Зимина ИВ, Арион ВЯ. Опиоидная система участвует в реализации анальгетических эффектов тактивина. Доклады Академии наук. 2013;430(5):1–4.
  41. Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab. 2014;34(5):845–851. doi: 10.1038/jcbfm.2014.23
  42. Giles JA, Greenhalgh AD, Davies CL, Denes A, Shaw T, Coutts G, Rothwell NJ, McColl BW, Allan SM. Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity. Eur J Immunol. 2015;45(2):525–530 doi: 10.1002/eji.201444748
  43. Mohan Kumar PS, ThyagaRajan S, Quadri S.K. Interleukin-1 stimulates the release of dopamine and dihydroxyphenylacetic acid from the hypothalamus in vivo. Life Science. 1991;48:925–930. doi: 10.1016/0024-3205(91)90040-I
  44. Holzinger D, Becker H, Jacobi AM.Interleukin-1-mediated diseases. Internist (Berl). 2013;54(4):408–415. doi: 10.1007/s00108-012-3186-3
  45. Lotrich FE, Butters MA, Aizenstein H, Marron MM, Reynolds CF 3rd, Gildengers AG. The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder. Int J Geriatr Psychiatry. 2014;29(6):635–644. doi: 10.1002/gps.4048
  46. Jones ME, Lebonville CL, Barrus D, Lysle DT. The role of brain interleukin-1 in stress-enhanced fear learning. Neuropsychopharmacology. 2015;40(5):1289–1296. doi: 10.1038/npp.2014.317
  47. Reggiani PC, Here-ú CB, Rimoldi OJ, Brown OA, Pléau JM, Dardenne M, Goya RG. Gene therapy for long-term restoration of circulating thymulin in thymectomized mice and rats. Gene Ther. 2006;13(16):1214–1221. doi: 10.1038/sj.gt.3302775
  48. Rochfort KD, Cummins PM. Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: role of cytokines and shear stress. Microvasc Res. 2015;97:1–5. doi: 10.1016/j.mvr.2014.09.003
  49. Jung WR, Kim HG, Shin MK, Park DI, Kim KL. The effect of ganglioside GQ1b on the NMDA receptor signaling pathway in H19-7 cells and rat hippocampus. Neuroscience. 2010;165(1):159–167. doi: 10.1016/j.neuroscience.2009.10.012
  50. Thyagarajan S, Felten DL. Modulation of neuroendocrine-immune signaling by L-deprenyl and L-desmethyldeprenyl in aging and mammary cancer. Mechanisms of Ageing and Development. 2002;123:1065–1079. doi: 10.1016/S0047-6374(01)00390-6
  51. Линькова НС, Полякова ВО, Кветной ИМ, Трофимов АВ, Севостьянова НН. Особенности эпифизарно-тимических взаимоотношений при старении. Успехи геронтологии. 2011;24(1):38–42.
  52. Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Piacenza F, Lattanzio F, Basso A. Is there a possible single mediator in modulating neuroendocrine-thymus interaction in ageing? Curr Aging Sci. 2013;6(1):99–107. doi: 10.2174/1874609811306010013
  53. Chereshnev VA, Bocharov G, Bazhan S, Bachmetyev B, Gainova I, Likhoshvai V, Argilaguet JM, Martinez JP, Rump JA, Mothe B, Brander C, Meyerhans A. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int Rev Immunol. 2013;32(3):282–306. doi: 10.3109/08830185.2013.779375
  54. Yong VW, Rivest S. Taking advantage of the systemic immune system to cure brain diseases. Neuron. 2009;64(1):55–60. doi: 10.1016/j.neuron.2009.09.035
  55. Quan N, Herkenham M. Connecting cytokines and brain: a review of current issues. Histol Histopathol. 2002;17(1):273–288.
  56. Denes A, Thornton P, Rothwell NJ. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun. 2010;24(5):708–723. doi: 10.1016/j.bbi.2009.09.010
  57. Dinarello CA. IL-1: discoveries, controversies and future directions. Eur J Immunol. 2010;40(3):599–606 doi: 10.1002/eji.201040319
  58. Engelhardt B. Regulation of immune cell entry into the central nervous system. Results Probl Cell Differ. 2006;43:259–280 doi: 10.1007/400_020
  59. Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol. 2011;13(12):1308–1323. doi: 10.1093/neuonc/nor134
  60. Ogłodek E, Szota A, Just M, Moś D, Araszkiewicz A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol Rep. 2014;66(5):776–781. doi: 10.1016/j.pharep.2014.04.009
  61. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267–1276. doi: 10.1038/nm.2234

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies