Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects

Cover Page


Cite item

Full Text

Abstract

Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptor signaling pathways and cascade of reactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT. These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects the formation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

About the authors

Gennadiy Ignat'evich Podoprigora

The Russian National Research Medical University named after N.I. Pirogov; Institute of Cytochemistry and Molecular Pharmacology

Author for correspondence.
Email: gipodoprigora@yandex.ru
MD, PhD, Professor, Director of the Institute of Cytochemistry and Molecular Pharmacology Russian Federation

Lyudmila Ivanovna Kafarskaya

The Russian National Research Medical University named after N.I. Pirogov

Email: likmed@mail.ru
MD, PhD, Professor, Head of the Microbiology and Virology department Russian Federation

Nikolay Alekseevich Baynov

The Russian National Research Medical University named after N.I. Pirogov

Email: vonib@mail.ru
MD, PhD, Professor assistance Russian Federation

Andrey Nikolaevich Shkoporov

The Russian National Research Medical University named after N.I. Pirogov

Email: a.shkoporov@gmail.com
MD, PhD, Cheif Researcher Russian Federation

References

  1. Jager S, Stange EF, Wehkamp J. Inflammatory bowel disease: an impaired barrier disease. Langenbecks Arch Surg. 2013;398(1):1–12. doi: 10.1007/s00423-012-1030-9
  2. Schweinburg FB, Seligman AM, Fine J. Transmural migration of intestinal bacteria; a study based on the use of radioactive Escherichia coli. N Engl J Med. 1950;242(19):747-751. doi: 10.1056/NEJM195005112421903.
  3. Luckey T. Germ-free life and gnotobiology, Acad. Press, New York, London. 1963.252 с.
  4. Berg R. Factors influencing the translocation of bacteria from the gastrointestinal tract. Recent advances in germfree research, Editors: Sasaki, S., Ozawa, A., and Hashimoto, K., Tokai University Press, Tokyo. 1981. Р.411–418.
  5. Подопригора ГИ. Медицинская гнотобиология. М.: МИА. 2003. 272 с.
  6. Берман ВМ. Барьерфиксирующая функция организма в явлениях инфекции и иммунитета. В кн.: Вопросы возрастной иммунологии. Под ред. В.М. Бермана. Л. 1947. С. 7–50.
  7. Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods. 2015;421:44–53. doi: 10.1016/j.jim.2014.12.015.
  8. Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon. 2012;10(6):350–356. doi: 10.1016/j.surge.2012.03.003.
  9. Da Silva S, Robbe-Masselot C, Ait-Belgnaoui A, Mancuso A, Mercade-Loubiere M, Salvador-Cartier C, et al. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am J Physiol Gastrointest Liver Physiol. 2014;307(4):G420–429. doi: 10.1152/ajpgi.00290.2013.
  10. Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, et al. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol (1985). 2014;116(2):183–191. doi: 10.1152/japplphysiol.00646.2013.
  11. Soares AD, Costa KA, Wanner SP, Santos RG, Fernandes SO, Martins FS, et al. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. Br J Nutr. 2014;112(10):1601–1610. doi: 10.1017/S0007114514002608.
  12. Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes. 2013;4(1):4–16. doi: 10.4161/gmic.22371.
  13. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM, Raes J, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013;62(1):146–158. doi: 10.1136/gutjnl-2011-301805.
  14. Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112 Suppl 1:S1–18. doi: 10.1017/S0007114514001275.
  15. Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62(4):1157–1170. PMC98942.
  16. Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: the importance of the pregnancy period. Pediatr Res. 2015;77(1–2):214–219. doi: 10.1038/pr.2014.165.
  17. Brandtzaeg P. Homeostatic impact of indigenous microbiota and secretory immunity. Benef Microbes. 2010;1(3):211–227. doi: 10.3920/BM2010.0009.
  18. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–120. doi: 10.1038/cmi.2010.67.
  19. Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: From molecules to diseases. World J Gastrointest Pathophysiol. 2011;2(6):123–137. doi: 10.4291/wjgp.v2.i6.123.
  20. Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N. Molecular organization of tricellular tight junctions. Tissue Barriers. 2014;2:e28960. doi: 10.4161/tisb.28960.
  21. Carter SR, Zahs A, Palmer JL, Wang L, Ramirez L, Gamelli RL, et al. Intestinal barrier disruption as a cause of mortality in combined radiation and burn injury. Shock. 2013;40(4):281-289. doi: 10.1097/SHK.0b013e3182a2c5b5.
  22. Чернух АМ, Подопригора ГИ, Кранчев АК. Изучение путей проникновения бактерий E. coli 055 через стенку кишечника у гнотобиотических и обычных животных. Бюллетень экспериментальной биологии и медицины. 1978;86(6):654–657.
  23. Alexander JW, Boyce ST, Babcock GF, Gianotti L, Peck MD, Dunn DL, et al. The process of microbial translocation. Ann Surg. 1990;212(4):496–510; discussion 511–492. PMC1358286.
  24. Liaunardy-Jopeace A, Gay NJ. Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol. 2014;5:473. doi: 10.3389/fimmu.2014.00473.
  25. Liu J, Buisman-Pijlman F, Hutchinson MR. Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Front Neurosci. 2014;8:309. doi: 10.3389/fnins.2014.00309.
  26. Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, et al. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev. 2013;12(7):726–740. doi: 10.1016/j.autrev.2012.12.005.
  27. Owen RL, Apple RT, Bhalla DK. Morphometric and cytochemical analysis of lysosomes in rat Peyer’s patch follicle epithelium: their reduction in volume fraction and acid phosphatase content in M cells compared to adjacent enterocytes. Anat Rec. 1986;216(4):521–527. doi: 10.1002/ar.1092160409.
  28. Gebert A, Fassbender S, Werner K, Weissferdt A. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts. The American Journal of Pathology. 1999;154(5):1573–1582. doi: 10.1016/s0002-9440(10)65410–7.
  29. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009;462(7270):226–230. doi: 10.1038/nature08529.
  30. Ohno H, Hase K. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes. 2010;1(6):407–410. doi: 10.4161/gmic.1.6.14078.
  31. Быков ВЛ. Клетки Панета: история открытия, структурные и функциональные характеристики и роль в поддержании гомеостаза в тонком кишечнике. Морфология. 2014;145(1):67–80.
  32. Chassaing B, Kumar M, Baker MT, Singh V, Vijay-Kumar M. Mammalian gut immunity. Biomed J. 2014;37(5):246–258. doi: 10.4103/2319-4170.130922.
  33. Saxena M, Yeretssian G. NOD-Like Receptors: Master Regulators of Inflammation and Cancer. Front Immunol. 2014;5:327. doi: 10.3389/fimmu.2014.00327.
  34. Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207 Suppl 1:E103-111. doi: 10.1111/j.1749–6632.2010.05713.x.
  35. Evans WE, Darin JC. Effect of enterectomy in endotoxin shock. Surgery. 1966;60(5):1026–1029.
  36. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Arch Surg. 1986;121(2):196–208.
  37. Ewaschuk JB, Backer JL, Churchill TA, Obermeier F, Krause DO, Madsen KL. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun. 2007;75(5):2572–2579. doi: 10.1128/IAI.01662-06.
  38. Moretti J, Blander JM. Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol. 2014;26:100–110. doi: 10.1016/j.coi.2013.11.003.
  39. Hackam DJ, Good M, Sodhi CP. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Semin Pediatr Surg. 2013;22(2):76–82. doi: 10.1053/j.sempedsurg.2013.01.003.
  40. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013-1022. doi: 10.1016/j.cell.2014.04.007.
  41. Rajala MW, Patterson CM, Opp JS, Foltin SK, Young VB, Myers MG, Jr. Leptin acts independently of food intake to modulate gut microbial composition in male mice. Endocrinology. 2014;155(3):748–757. doi: 10.1210/en.2013–1085.
  42. Khailova L, Frank DN, Dominguez JA, Wischmeyer PE. Probiotic administration reduces mortality and improves intestinal epithelial homeostasis in experimental sepsis. Anesthesiology. 2013;119(1):166–177. doi: 10.1097/ALN.0b013e318291c2fc.
  43. Podoprigora G, Comunian L, Pimentel E, Moura L, Cara D, Nicoli J, et al. Stimulatory effect of Bifidobacteria on the host mononuclear phagocyte system using gnotobiotic animal models. Anaerobe. 1999;5(3):509–512.
  44. Nebot-Vivinus M, Harkat C, Bzioueche H, Cartier C, Plichon-Dainese R, Moussa L, et al. Multispecies probiotic protects gut barrier function in experimental models. World J Gastroenterol. 2014;20(22):6832–6843. doi: 10.3748/wjg.v20.i22.6832.
  45. Nair V, Soraisham AS. Probiotics and prebiotics: role in prevention of nosocomial sepsis in preterm infants. Int J Pediatr. 2013;2013:874726. doi: 10.1155/2013/874726.
  46. Theodorakopoulou M, Perros E, Giamarellos-Bourboulis EJ, Dimopoulos G. Controversies in the management of the critically ill: the role of probiotics. Int J Antimicrob Agents. 2013;42 (Suppl):S41–44. doi: 10.1016/j.ijantimicag.2013.04.010.
  47. Victoni T, Coelho FR, Soares AL, de Freitas A, Secher T, Guabiraba R, et al. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med Microbiol Immunol. 2010;199(1):35–42. doi: 10.1007/s00430-009-0134-5.
  48. Muhlbauer M, Perez-Chanona E, Jobin C. Epithelial cell-specific MyD88 signaling mediates ischemia/reperfusion-induced intestinal injury independent of microbial status. Inflamm Bowel Dis. 2013;19(13):2857–2866. doi: 10.1097/01.MIB.0000435445.96933.37.
  49. Yoshiya K, Lapchak PH, Thai TH, Kannan L, Rani P, Dalle Lucca JJ, et al. Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G1020–1030. doi: 10.1152/ajpgi.00239.2011.
  50. Deitch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg. 1992;216(2):117–134. PMC1242583.
  51. Gortani G, Gregori M, Giannotta A, Barbi E. A «shocking» appendicitis. Pediatr Emerg Care. 2013;29(2):233–234. doi: 10.1097/PEC.0b013e318280d80c.
  52. Подопригора ГИ, Нарциссов ЯР. Влияние глицина на микроциркуляцию в сосудах брыжейки крыс. Бюллетень экспериментальной биологии и медицины. 2009;147:279–283.
  53. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011.
  54. Gronlund MM, Gueimonde M, Laitinen K, Kociubinski G, Gronroos T, Salminen S, et al. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy. 2007;37(12):1764–1772. doi: 10.1111/j.1365-2222.2007.02849.x.
  55. Gronlund MM, Grzeskowiak L, Isolauri E, Salminen S. Influence of mother’s intestinal microbiota on gut colonization in the infant. Gut Microbes. 2011;2(4):227–233. doi: 10.4161/gmic.2.4.16799.
  56. Fernandez L, Langa S, Martin V, Maldonado A, Jimenez E, Martin R, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10. doi: 10.1016/j.phrs.2012.09.001.
  57. Donnet-Hughes A, Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc. 2010;69(3):407–415. doi: 10.1017/S0029665110001898.
  58. Boumahrou N, Chevaleyre C, Berri M, Martin P, Bellier S, Salmon H. An increase in milk IgA correlates with both pIgR expression and IgA plasma cell accumulation in the lactating mammary gland of PRM/Alf mice. J Reprod Immunol. 2012;96(1–2):25–33. doi: 10.1016/j.jri.2012.08.001.
  59. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
  60. Wu R, Dong W, Wang Z, Jacob A, Cui T, Wang P. Enhancing apoptotic cell clearance mitigates bacterial translocation and promotes tissue repair after gut ischemia-reperfusion injury. Int J Mol Med. 2012;30(3):593–598. doi: 10.3892/ijmm.2012.1044.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies