Transamination in syncytiotrophoblast of placenta villi in parturient women who suffered the acute form of cmvi at the third trimester of gestation

Cover Page

Cite item


Aim: to study the process of proteins transamination in syncytiotrophoblast of placenta villi of women who suffered the acute form of cytomegalovirus (CMV) infection during pregnancy.

Methods: 30 pregnant women with CMV infection recurrence at the 25–28th week of pregnancy were examined. The activity of γ-glutamyltransferase in the peripheral blood of pregnant women was determined by spectrophotometry at the device «Stat-Fax-2100» (The USA). Hsp-70 and caspase-3 in placenta homogenate were found out with serological methods. The activity of glutamatdehydrogenase and pyridoxal-5-phosphatase was studied with histochemical method of Z. Loyd at the placenta slice of parturient women. The apoptotic changes in syncytiotrophoblast nuclei were defined by ISEL-method.

Results. The peripheral blood of CMV-seropositive parturient women showed a reduction of γ-glutamyltransferase in 1.30 times. Histochemically we identified the reduction of reaction products' concentration in response to pyridoxal-5-phosphate by 2.14 times, to glutamatdehydrogenase by 1,57 times. At the same time there was an increase of caspase-3 in 2,8 times and reduction of Hsp70 in 2.6 times in placenta homogenate. The number of apoptotic changes in syncytiotrophoblast nuclei increased by 4 times.

Conclusion. Worsening of CMV infection in the period 25–28 weeks of pregnancy leads to disruption of amino acid metabolism in the placenta, causing structural and functional and metabolic adjustment, and is one of the reasons for slow growth and lack of development of the fetus. 

About the authors

Mikhail Timofeevich Lutsenko

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Author for correspondence.
MD, PhD, professor, head of the laboratory Russian Federation

Irina Anatol'evna Andrievskaya

Far Eastern Scientific Center of Physiology and Pathology of Respiration

PhD, Cheif researchet at the laboratory Russian Federation


  1. Kelly A, Stanley C. Disordes of glutamate metabolism. Men Retard Dev Disabl Res Rev. 2011;7:287–295. doi: 10.1002/mrdd.1040
  2. Комов ВП, Шведова ВН. Биохимия. М.: Дрофа. 2004. 640 с.
  3. Whitfield J. Gamma glutamyltransferase. Crit Rev Clin Lab Sci. 2001;38:263–355. doi: 10.1080/20014091084227
  4. Браунштейн АЕ, Шемякин ММ. Теория процессов аминокислотного обмена, катализируемых пиридоксалевыми энзимами. М., 1953. 393 с.
  5. Filipowicz A, Wolowiec S. Bioconjugates of PAMAM dendrimers with trans retinal pyridoxal and pyridoxal phosphate. Int J Nanomedicine. 2012;7:4819–4828. doi: 10.2147/IJN.S34175
  6. Nichols TW, Gaiteri C. Mortons foot and pyridoxal–5 phosphate deficiency: denetically linked traits. Med Hypotheses. 2014;83(6):644–648. doi: 10.1016/j.mehy.2014.09.003
  7. Stumvoll M, Perriell G, Meyer C. Role of glutamine in human carbohydrate metabolism in kidney and other tissue. Kidney Int. 1999;55:778–792. doi: 10.1046/j.1523-1755.1999.055003778.x
  8. Sookolan S, Pirola C. Alanine and aspartate aminotransferase and glutamine cycling pathway: Their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012;78(29):3779–3781. doi: 10.3748/wjg.v18.i29.3775
  9. Strasak A, Kelleher C, Klenk J. Longitudinalchange in serum gamma glutamyltransferase and cardiovascular disease mortality: a prospective population based study in 76,113 Austrian adults. Arterioscler Thromb Vasc Biol. 2008;28:1857–1865. doi: 10.1161/ATVBAHA.108.170597
  10. Trebery J, Banh S, Weihrach D. Intertissue differences for the role the of glutamate-gehydrogenas in metabolism. Neurochem Res. 2014;3(3):516–526. doi: 10.1007/s11064-013-0998-z
  11. Луценко МТ, Андриевская ИА, Дорофиенко НН. Оценка роли белка Hps70 в синцитиотрофобласте плаценты при обострении герпес-вирусной инфекции в период гестации. Бюллетень физиологии и патологии дыхания. 2011;39:13–16.
  12. Лойда З, Гроссрау Р, Шиблер Т. Гистохимия ферментов. Лабораторные методы. М. 1962. 270 с.
  13. Пирс Э. Гистохимия. М.: Изд-во иностранной литературы. 1962. 944 с.
  14. Ananieva EA, Patel C, Drake C, Powell JD. Cytosolic branched chain aminotransferase regulates mTorc1 signaling and glycolytic metabolism in CD4+T-cell. J Biol Chem. 2014;289(27):18793–18804. doi: 10.1074/jbc.M114.554113
  15. Emdin M, Passoino C, Michelassi C, Donato L. Association between gamma-glutamyltransferase in coronary artery disease. Int J Cardiol. 2009;136:80–85. doi: 10.1016/j.ijcard.2008.04.030
  16. Lee DH, Silventoinen K, Hu G. Serum gamma glutamyltransferase predicts non-fatal myocardial infarction and fatal coronary heart disease among 28,838 middle aged men and women. Eur Heart J. 2006;27:2170–2176. doi: 10.1093/eurheartj/ehl086
  17. Ruttman E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H. Gamma glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation. 2005;112:2130–2137. doi: 10.1161/CIRCULATIONAHA.105.552547
  18. Fraser A, Harris R, Sattar N, Ebrahim S, Smith G. Gamma glutamyltransferase is associated with incident vascular events independently of alcohol intake: analysis of the British women’s Heart and Health Stady and Meta-Analysis. Arterioscler Thromb Vasc Biol. 2007;27:2729–2735. doi: 10.1161/ATVBAHA.107.152298
  19. Brosnan M, Brosnan J. Hepatic glutamate metabolism: a tale 2 hepatocytes. Amer Clin Nutr. 2009;90:857–861. doi: 10.3945/ajcn.2009.27462Z
  20. Hermanussen M, Tresguerres J. Does the thrifty phenotype result from chronic glutamate intoxication. J Perinal Med. 2003;31:311–326.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2015 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies