Cellular Composition of Calcified Bioprosthetic Heart Valves

Cover Page

Abstract


With the aim to assess the mechanisms of the structural dysfunctions associated with xenograft tissue calcification, we investigated the cellular composition of the explanted xenoaortic epoxy-treated bioprosthetic heart valves. In the leaflets, we revealed multiple cells with retained internal structure. Most of them located on the leaflet surface, at the areas of collagen destruction, and near calcium deposits. Monocytes were the predominant cell fraction on the leaflet surface whilst immune (macrophages, multinucleated giant cells, plasma cells, neutrophils) and connective tissue (fibroblasts, fibrocytes, endothelial, and smooth muscle cells) cells prevailed at the areas of collagen destruction and near calcium deposits. Calcification of the leaflets was accompanied by cellular infiltration, therefore suggesting that pathological mineralization may be associated with cell-mediated processes.


Rinat Avkhadievich Mukhamadiyarov

Research Institute for Complex Issues of Cardiovascular Diseases,

Author for correspondence.
Email: rem57@rambler.ru

Russian Federation PhD

Natal'ya Vital'evna Rutkovskaya

Research Institute for Complex Issues of Cardiovascular Diseases,

Email: wenys@mail.ru

Russian Federation MD, PhD

Ol'ga Dmitrievna Sidorova

Kemerovo State Medical Academy

Email: goopy-777@rambler.ru

Russian Federation MD, PhD, Professor

Leonid Semenovich Barbarash

Research Institute for Complex Issues of Cardiovascular Diseases

Email: director@kemcardio.ru

Russian Federation MD, PhD, Professor, Academician of Russian Academy of Sciences

  1. Tillquist M, Maddox T. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Patient Prefer. Adherence. 2011;5:91–99. doi: 10.2147/PPA.S16420
  2. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005;79:1072–1080.
  3. Aronow WS. Osteoporosis, osteopenia and atherosclerotic vascular disease. Arch. Med. Sci. 2011;7(1):21–26.
  4. Miller JD, Weiss RM, Heistad DD. Calcific aortic valve stenosis: methods, models and mechanisms. Circ. Res. 2011;108:1392–1412.
  5. Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur. Heart J. 2010;31(16):1975–1984. doi: 10.1093/eurheartj/ehq237
  6. Sophie EP, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 2011;108:1381–1391.
  7. Mahjoub Y, Mathieu P, Senechal M, Larose E, Dumesnil J, Després JP, Pibarot P. ApoB/ApoA ratio is associated with increased risk bioprosthetic valve degeneration. J. Am. Coll. Cardiol. 2013;61(7):752–761.
  8. Barbarash O, Rutkovskaya N, Hryachkova O, Gruzdeva О, Uchasova Е, Ponasenko А, Kondyukova N, Odarenko Y, Barbarash L. Impact of recipient related factors on structural dysfunction rates of xenoaortic bioprothetic heart valve. Patient Pref. Adher. 2015;9:389–399.
  9. Cote C, Pibarot P, Despres JP, Mohty D, Cartier A, Arsenault BJ, Couture C, Mathieu P. Association between circulating oxidized low density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis. Heart. 2008;94:1175–1180. doi: 10.1136/hrt.2007.125740
  10. Shetty R, Pibarot P, Auget A, Janvier R, Dagenais F, Perron J, Couture C, Voisine P, Després JP, Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009;39:471–480.
  11. Мухамадияров РА, Севостьянова ВВ, Нохрин АВ, Головкин АС. Способ изготовления образцов биологических тканей в комплексе с имплантированными элементами для исследования световой микроскопией. Патент РФ на изобр. № 2564895. 10 октября 2015.
  12. Peacock JD, Levay AK, Gillaspie DB, Tao G, Lincoln J. Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circ. Res. 2010;106:712–719.
  13. Honge JL, Funder JA, Pedersen T.B, Kronborg MB, Hasenkam JM. Degenerative processes in bioprosthetic mitral valves in juvenile pigs. J. Cardiothorac. Surg. 2011;6:72.
  14. Cremer PC, Rodriguez LL, Griffin B.P, Tan C, Rodriguez R, Johnston DR, Pettersson GB, Menon V. Early Bioprosthetic Valve Failure: A Pictorial Review of Rare Causes. JACC. 2015; 8 (6): 737–740. doi: 10.1016/j.jcmg.2014.06.025
  15. Gang-Jian G, Tao Chen, Hong-Min Zhou, Ke-Xiong Sun, Jun Li. Role of Wnt/β-catenin signaling pathway in the mechanism of calcification of aortic valve. J. of Huazhong University of Science and Technology. 2014;34(1):33–36.
  16. Naira V, Lawa KB, Lia AY, Phillipsa KRB, Davidd TE, Butanya J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stent less porcine aortic bioprosthesis over a 6 year period. Cardiovascular. Pathology. 2012;21:158–168.
  17. Miller JD, Weiss RM, Serrano KM, Castaneda LE, Brooks RM, Zimmerman K, Heistad DD. Evidence for active regulation of pro–osteogenic signaling in advanced aortic valve disease. Arterioscler. Thromb. Vasc. Biol. 2010;30:2482–2486.
  18. Chen JH, Simmons CA. Cell matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circulation Research. 2011;108:1510–1524. doi: 10.1161/CIRCRESAHA.110.234237
  19. Hénaut L, Mentaverri R, Liabeuf S, Bargnoux AS, Delanaye Р, Cavalier Е, Cristol JP, Massy Z, Kamel S. Pathophysiological mechanisms of vascular calcification. Ann. Biol. Clin. 2015;1;73(3):271–287.
  20. Demer LL, Tintut Y. Inflammatory, Metabolic, and Genetic Mechanisms of Vascular Calcification. Arterioscler. Thromb. Vasc. Biol. 2014;34:715–723.
  21. Wylie-Sears J, Aikawa E, Levine R.A, Yang JH, Bischoff J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 2011;31:598–607.
  22. Evrard S, Delanaye P, Kamel S, Cristole JР, Cavalier Е. Vascular calcification: from pathophysiology to biomarkers. Clinica Chimica Acta. 2015;438:401–414. doi: 10.1016/j.cca.2014.08.034
  23. Pal SN, Golledge J. Osteo-progenitors in vascular calcification: a circulating cell theory. J. Atheroscler. Thromb. 2011;18:551–559.
  24. Muratov R, Britikov D, Sachkov А, Akatov V, Soloviev V, Fadeeva I, Bockeria L. New approach to reduce allograft tissue immunogenicity. Experimental data. Interact. Cardiovasc. Thorac. Surg. 2010;10(3):408–412.
  25. Lavenus S, Ricquier J.C, Layrolle P. Cell interaction with nanopatterned surface of implants. Nanomedicine. 2010;5(6):937–947. doi: 10.2217/nnm.10.54

Views

Abstract - 48

PDF (Russian) - 38

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies