Energy Metabolism in the Placenta and the Role of Disturbances in the Development of Placental Insufficiency at an Exacerbation of Cytomegalovirus Infection

Cover Page

Cite item


Objective. Determine the characteristics of placental energy metabolism and to establish its role in the development of placental insufficiency at an exacerbation of cytomegalovirus (CMV) infection in 25–28 weeks of gestation.

Methods. In a prospective study of the case-control type included pregnant, delivery on term of 37–38 weeks. The sample of 50 pregnant women, including 25 CMV-seropositive with exacerbation of CMV infection at 25–28 weeks of gestation and with the titer of IgG antibodies to CMV 1: 1600 at the time of the study and 25 CMV-seronegative women the same pregnancy. The study was conducted at the obstetric department of pathology of pregnancy and laboratory «Etiopathogenesis mechanisms and recovery processes with non-specific lung diseases» Far Eastern Scientific Center of Physiology and Pathology of Respiration together with the urban maternity ward at City Hospital in the period from 2014 to 2015. The activity of pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and a dehydrogenase lipoic acid was determined by histochemical methods on cryostat sections of fresh frozen tissue placenta by the method of R. Lilly. Evaluation of the intensity of histochemical reactions carried out by the program cytophotometry Scion. The morphology of the placenta was studied in paraffin sections stained with hematoxylin Böhmer-eosin, van Gieson’s picrofuchsin and alcian blue by Steedman. 

Results. Exacerbation of CMV infection at 25–28 weeks of gestation leads to a decrease in the intensity of the histochemical reaction of pyruvate dehydrogenase in 2.4 times, lipoic acid dehydrogenase — in 2.9 times, and α-ketoglutarate dehydrogenase — in 1.5 times in the syncytiotrophoblast villous placenta. The placental morphological structure study showed villi in a state of death or necrotic changes, as well as increasing the number of avascular immature villi. In the maternal part of the placenta were marked constriction clearances, hypertrophy of muscle and connective tissue layers blood vessels. 

The conclusion. The findings suggest that the exacerbation of CMV infection at 25–28 weeks of pregnancy causes a decrease in the intensity of energy metabolism in the placenta by suppressing the activity of the enzymes α-ketoglutarate dehydrogenase and pyruvate dehydrogenase complex, which is accompanied by disturbances of the morphological structure of the placental barrier, the development of placental insufficiency.


About the authors

M. T. Lucenko

Far-Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk

Author for correspondence.
Lucenko Michael Timofeevich Russian Federation

I. A. Andrievskaya

Far-Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk

Andrievskaya Irina Anatolevna Russian Federation

I. V. Dovzhikova

Far-Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk

Dovzhikova Inna Viktorovna Russian Federation


  1. Fisher S, Genbacev O, Maidji E, Pereira L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J Virol. 2000;74(15):6808–6820. doi: 10.1128/jvi.74.15.6808-6820.2000.
  2. Артемчик Т.А., Германенко И.Г., Клецкий С.К. Патоморфологическое исследование плацент при цитомегаловирусной инфекции // Медицинский журнал. — 2012. — №3. — С. 10–13. [Artemchik TA, Germanenko IG, Kletskii SK. Patomorphological research in placentae at cytomegalovirus infection. Med Zhurnal. 2012;(3):10–13. (In Russ).]
  3. Лилли Р. Патогистологическая техника и практическая гистохимия. — М.: Мир; 1969. 640 с. [Lilli R. Patogistologicheskaya tekhnika i prakticheskaya gistokhimiya. Moscow: Mir; 1969. 640 p. (In Russ).]
  4. Starai VJ, Escalante-Semerena JC. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci. 2004;61(16):2020–2030. doi: 10.1007/s00018-004-3448-x.
  5. Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabol Eng. 2013;15:48−54. doi: 10.1016/j.ymben.2012.11.002.
  6. Kozak BU, van Rossum H, Benjamin K, et al. Replacement of the Saccharomyces cerevisial acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Eng. 2014;21:46−59. doi: 10.1016/j.ymben.2013.11.005.
  7. Kozak BU, van Rossum HM, Luttik MA, et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio. 2014;5(5):e01696. doi: 10.1128/mBio.01696-14.
  8. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990;4(14):3224–3233.
  9. Witzmann S, Bisswanger H. The pyruvate dehydrogenase complex from thermophilic organisms: thermal stability and re-association from the enzyme components. Biochim Biophys Acta. 1998;1385(2):341–352. doi: 10.1016/s0167-4838(98)00078-8.
  10. Oud B, Flores CL, Gancedo C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:131. doi: 10.1186/1475-2859-11-131.
  11. Cronan JE, Zhao X, Jiang Y. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv Microb Physiol. 2005;50:103–146. doi: 10.1016/S0065-2911(05)50003-1.
  12. Schonauer MS, Kastaniotis AJ, Kursu VA, et al. Lipoic acid synthesis and attachment in yeast mitochondria. J Biol Chem. 2009;284(35):23234–23242. doi: 10.1074/jbc.M109.015594.
  13. Кнорре Д.Г., Мызина С.Д. Биологическая химия. — М.; 2003. — 185 с. [Кnorre DG, Myzina SD. Biologicheskaya khimiya. Moscow; 2003. 185 p. (In Russ).]
  14. Скулачев В.П. Эволюция биологических механизмов запасания энергии // Соросовский образовательный журнал. — 1996. — №3. — С. 4–10. [Skulachev VP. Evolyutsiya biologicheskikh mekhanizmov zapasaniya energii. Sorosovskii obrazovatel’nyi zhurnal. 1996;(3):4–10. (In Russ).]
  15. Perham RN. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991;30(35):8501–8512. doi: 10.1021/bi00099a001.
  16. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006;119(5 Suppl 1):S10–16. doi: 10.1016/j.amjmed.2006.01.009.
  17. Witteles RM, Tang WH, Jamali AH, et al. Insulin resistance in idiopathic dilated cardiomyopathy: a possible etiologic link. J Am Coll Cardiol. 2004;44(1):78–81. doi: 10.1016/j.jacc.2004.03.037.
  18. Стрижаков А.Н., Тимохина Т.Ф., Баев О.Р. Фетоплацентарная недостаточность: патогенез, диагностика, лечение // Вопросы гинекологии, акушерства и перинатологии. — 2003. — Т. 2. — №2. — С. 53–63. [Strizhakov AN, Timokhina TF, Baev OR. Fetoplacental insufficiency: pathogenesis, diagnostics, treatment. Problems of gynecology, obstetrics, and perinatology. 2003;2(2):53–63. (In Russ).]

Supplementary files

There are no supplementary files to display.

Comments on this article

View all comments

Copyright (c) 2016 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies