β-Catenin: Structure, Function and Role in Malignant Transformation of Epithelial Cells

Cover Page
  • Authors: Isaeva A.V.1,2, Zima A.P.1,3, Shabalova I.P.4, Ryazantseva N.V.5,6, Vasil’eva O.A.1, Kasoayn K.T.4, Saprina T.V.1, Latypova V.N.1, Berezkina I.S.1, Novitskii V.V.1
  • Affiliations:
    1. Siberian State Medical University
    2. Tomsk Саnсеr Rеsеаrсh Institute
    3. Immanuel Kant Baltic Federal University
    4. Russian Medical Academy of Postgraduate Education Studies
    5. Siberian Federal University
    6. Krasnoyarsk State Medical University
  • Issue: Vol 70, No 4 (2015)
  • Pages: 475-483
  • Section: SHORT MESSAGES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/497
  • DOI: https://doi.org/10.15690/vramn.v70.i4.1415
  • Cite item

Abstract


The article presents the data on the structure and mechanisms of β-сatenin functioning. The basic aspects of the role of β-сatenin in malignant transformation have been studied at various tumors. Primary structure of β-catenin allows it to interact with many factors and ligands, including transcription factors, α-catenin, cadherin, Axin, Rho family GTPases, Bcl9 et al. This interaction is the base for β-catenin's intracellular multifunctioning. The review presents data on the participation of β-catenin in the mechanisms of adhesion, regulation of RNA metabolism, formation contacts with the cytoskeleton and its role in the canonical Wnt signaling pathway, marked examples pro-inflammatory and anti-inflammatory effects of β-catenin. The β-catenin involvement in malignant transformation and progression of certain tumors is not in doubt. The data on the changes in β-catenin expression in the given examples of colon cancer, prostate cancer, different forms of thyroid cancer and hepatocellular carcinoma are presented with the prospects of its use as a marker and a predictor of malignant transformation. Continued research in this area will not only make use of β-catenin as a potential predictor of malignant tumors, but also to develop approaches to targeted therapy.

A. V. Isaeva

Siberian State Medical University;
Tomsk Саnсеr Rеsеаrсh Institute

Author for correspondence.
Email: seneann@mail.ru

Russian Federation Tomsk

A. P. Zima

Siberian State Medical University;
Immanuel Kant Baltic Federal University

Email: zima2302@gmail.com

Russian Federation

Tomsk;

Kaliningrad

I. P. Shabalova

Russian Medical Academy of Postgraduate Education Studies

Email: irenshab@inbox.ru

Russian Federation Moscow

N. V. Ryazantseva

Siberian Federal University;
Krasnoyarsk State Medical University

Email: nv_ryazan@mail.ru

Russian Federation Krasnoyarsk

O. A. Vasil’eva

Siberian State Medical University

Email: vasiljeva-24@yandex.ru

Russian Federation Tomsk

K. T. Kasoayn

Russian Medical Academy of Postgraduate Education Studies

Email: karishe@list.ru

Russian Federation Moscow

T. V. Saprina

Siberian State Medical University

Email: tvsaprina@sibmail.com

Russian Federation Tomsk

V. N. Latypova

Siberian State Medical University

Email: veneralatypova@mail.ru

Russian Federation Tomsk

I. S. Berezkina

Siberian State Medical University

Email: berezkina.is@mail.ru

Russian Federation Tomsk

V. V. Novitskii

Siberian State Medical University

Email: kaf.pat.fiziolog@ssmu.ru

Russian Federation Tomsk

  1. Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecular uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989; 8: 1711–1717.
  2. Maiden S.L., Hardin J. The secret life of β-catenin: Moonlighting in morphogenesis. J. Cell Biol. 2010; 195 (4): 543–552.
  3. Tewari R., Bailes E., Bunting K.A., Coates J.C. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol. 2010; 20: 470–481.
  4. McCrea P.D., Gu D. The catenin family at a glance. J. Cell Sci. 2010; 123: 637–642.
  5. Hatzfeld M. Multifunctional proteins or just regulators of desmosomal adhesion? Biochim. Biophys. Acta. 2007; 1773: 69–77.
  6. Clevers H., Nusse R. Wnt/b-Catenin Signaling and Disease. Cell. 2012; 149: 1192–1205.
  7. Kubota T., Michigami T., Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab. 2009; 27: 265–271.
  8. Tucci V., Kleefstra T., Hardy A., Heise I., Maggi S., Willemsen M.H., Hilton H., Esapa C., Simon M., Buenavista M-T., McGuffin L.J., Vizor L., Dodero L., Tsaftaris S., Romero R., Nillesen W.N., Vissers L.E.L.M., Kempers M.J., Vulto-van Silfhout A.T., Iqbal Z., Orlando M., Maccione A., Lassi G., Farisello P., Contestabile A., Tinarelli F., Nieus T., Raimondi A., Greco B., Cantatore D., Gasparini L., Berdondini L., Bifone A., Gozzi A., Wells S., Nolan P.M. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest. 2014; 124(4): 1468–1482.
  9. Huber A.H., Nelson W.J., Weis W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997; 90: 871–882.
  10. Huber A.H., Weis W.I. The structure of the b-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by b-catenin. Cell. 2001; 105: 391–402.
  11. Xu W., Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J. Cell Sci. 2007; 120: 3337–3344.
  12. Hur J., Jeong S. Multitasking β-catenin: from adhesion and transcription to RNA regulation. Animal Cells Syst. 2013; 17 (5): 299–305.
  13. Available at: http://www.stanford.edu/group/nusselab/cgi-bin/wnt/protein_interactions (accessed: 20.03.2015).
  14. Xing Y., Takemaru K.I., Liu J., Berndt J.D., Zheng J., Moon R.T., Xu W. Crystal Structure of a Full-Length β-Catenin. Structure. 2008; 16: 478–487.
  15. Valenta T., Hausmann G., Basler K. The many faces and functions of b-catenin. EMBO J. 2012; 31: 2714–2736.
  16. Choi H.J., Huber A.H., Weis W.I. Thermodynamics of β-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J. Biol. Chem. 2006; 281: 1027–1038.
  17. Shapiro L., Weis W.I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009; 1: 003053.
  18. Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta. 2008; 1778: 660–669.
  19. Franz C.M., Ridley A.J. p120 catenin associates with microtubules: inverse relationship between microtubule binding and Rho GTPase regulation. J. Biol. Chem. 2004; 279: 6588–6594.
  20. Perez-Moreno M., Fuchs E. Catenins: Keeping Cells from Getting Their Signals Crossed. Dev. Cell. 2006; 11: 601–612.
  21. Nelson W.J., Nusse R. Convergence of Wnt, β-Catenin, and Cadherin Pathways. Science, 2004; 305: 1483–1487.
  22. Berx G., van Roya F. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 2008; 65: 3756–3788.
  23. Gates J., Peifer M. Can 1000 reviews be wrong? Actin, alphaCatenin, and adherens junctions. Cell. 2005; 123: 769–772.
  24. Citi S., Guerrera D., Spadaro D., Shah J. Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases. 2014; 5 (4): 1–15.
  25. Esufali S., Bapat B. Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of bold italic beta-catenin and TCF/LEF-mediated transcriptional activation. Oncogene. 2004; 23: 8260–8271.
  26. Wu X., Tu X., Joeng K.S., Hilton M.J., Williams D.A., Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell. 2008; 133: 340–353.
  27. Ramis-Conde I., Drasdo D., Anderson A.R., Chaplain M.A. Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biobhys. J. 2008; 95 (1): 155–165.
  28. Order T.T., Gupta P.B., Mani S.A., Yang J., Lander E.S., Weinberg R.A. Loss of E-cadherin Promotes matastasis via Multiple Downstream Transcriptional pathways. Cancer Res. 2008; 68 (10): 3645–3653.
  29. Riggleman B., Sched P., Wieschaus E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell. 1990; 63: 549–560.
  30. Nusse R., Varmus H.E. Many tumors induced by the mouse mammary tumors virus contain a provirus integrated in the same region of the host genome. Cell. 1982; 31: 99–109.
  31. Zeller E., Hammer K., Kirschnick M., Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol. 2013; 87: 611–632.
  32. Kimelman D., Xu W. b-Catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006; 25: 7482–7491.
  33. Amit S., Hatzubai A., Birman Y., Andersen J.S., BenShushan E., Mann M., Ben-Neriah Y., Alkalay I. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002; 16 (9): 1066–1076.
  34. Kikuchi A., Kishida S., Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and posttranslational modifications. Exp. Mol. Med. 2006; 38: 1–10.
  35. Liu C., Li Y., Semenov M., Han C., Baeg G.H., Tan Y., Zhang Z., Lin X., He X. Control of b-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002; 108: 837–847.
  36. Hur J., Jeong. S. Multitasking β-catenin: from adhesion and transcription to RNA regulation. Animal Cells and Systems. Animal Cells Syst. 2013; 17 (5): 299–305.
  37. Graham T.A., Weaver C., Mao F., Kimelman D., Xu W. Crystal structure of a beta-catenin/Tcf complex. Cell. 2000; 103: 885–896.
  38. Mosimann C., Hausmann G., Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 2009; 10: 276–286.
  39. Gerlach J.P., Emmink B.L., Nojima H., Kranenburg O., Maurice M.M. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biol. 2014; 4: 140120.
  40. Hagemann A.I.H., Kurz J., Kauffeld S., Chen Q., Reeves P.M., Weber S., Schindler S., Davidson G., Kirchhausen T., Scholpp S. In vivo analysis of formation and endocytosis of the Wnt/β-Catenin signaling complex in zebrafish embryos. J. Cell Sci. 2014; 127: 3970–3982.
  41. Gustafson B., Smith U. Cytokines Promote Wnt Signaling and Inflammation and Impair the Normal Differentiation and Lipid Accumulation in 3T3-L1 Preadipocytes. J Biol. Chem. 2006; 281 (14): 9507–9516.
  42. Liu X., Lu R., Wu S., Sun J. Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Lett. 2010; 584 (5): 911–916.
  43. Sun J., Hobert M.E., Duan Y., Rao A.S., He T.C., Chang E.B., Madara J.L. Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am. J.
  44. Physiol. Gastrointest. Liver Physiol. 2005; 289 (1): 129–137.
  45. Duan Y., Liao A.P., Kuppireddi S., Ye Z., Ciancio M. J., Sun J. Beta-catenin activity negatively regulates bacteria-induced inflammation. Lab. Invest. 2007; 87 (6): 613–624.
  46. Liu X., Lu R., Wu S. Zhang Y.G., Xia Y., Sartor R.B., Sun J. Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells. Inflamm. Bowel Dis. 2012; 18 (3): 418–429.
  47. Silva-García O., Valdez-Alarcón J.J., Baizabal-Aguirre V.M. The Wnt/β-catenin signaling pathway controls the inflammatory response in infections caused by pathogenic bacteria. Mediators Inflamm. 2014; ID 310183. doi: 10.1155/2014/310183.
  48. Polakis P. Wnt signaling and cancer. Genes Dev. 2000; 14: 1837–1851.
  49. Morin P.J. b-catenin signaling and cancer. BioEssays. 1999; 21: 1021–1030.
  50. Easwaran V., Lee S.H., Inge L., Guo L., Goldbeck C., Garrett E., Wiesmann M., Garcia P.D., Fuller J.H., Chan V., Randazzo F., Gundel R., Warren R.S., Escobedo J., Aukerman S.L., Taylor R.N., Fantl W.J. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 2003; 63 (12): 3145–3153.
  51. Shivanna S., Harrold I., Shashar M., Meyer R., Kiang C., Francis J., Zhao Q., Feng H., Edelman E.R., Rahimi N., Chitalia V.C. The c-Cbl ubiquitin ligase regulates nuclear β-catenin and angiogenesis by its tyrosine phosphorylation mediated through the Wnt signaling pathway. J Biol Chem. 2015. doi: 10.1074/jbc.M114.616623.
  52. Said A.H., Raufman J-P., Xie G. The role of matrix metalloproteinases in colorectal cancer. Cancers. 2014; 6 (1): 366–375.
  53. Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147 (5): 992–1009.
  54. Vermeulen L., De Sousa E., Melo F., van der Heijden M., Cameron K., de Jong J.H., Borovski T., Tuynman J.B., Todaro M., Merz C., Rodermond H., Sprick M.R., Kemper K., Richel D.J., Stassi G., Medema J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010; 12 (5): 468–476.
  55. Roy S., Majumdar A.P.N. Signaling in colon cancer stem cells. J. Molecular Signaling. 2012; 7: 11.
  56. Scoville D.H., Sato T., He X.C., Li L. Current view: intestinal stem cells and signaling. Gastroenterology. 2008; 134: 849–864.
  57. Vermeulen L., De Sousa E Melo F., van der Heijden M., Cameron K., de Jong J.H., Borovski T., Tuynman J.B., Todaro M., Merz C., Rodermond H., Sprick M.R., Kemper K., Richel D.J., Stassi G., Medema J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010; 12 (5): 468–476.
  58. Valkenburg K.C., Graveel C.R., Zylstra-Diegel C.R., Zhong Z., Williams B.O. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells. Cancers. 2011; 3: 2050–2079.
  59. Lien W-H., Fuchs E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes & Dev. 2014; 28: 1517–1532.
  60. Nishisho I., Nakamura Y., Miyoshi Y., Miki Y., Ando H., Horii A., Koyama K., Utsunomiya J., Baba S., Hedge P., Markham A., Krush A.J., Petersen G., Hamilton S.R., Nilbert M.C., Levy D.B., Bryan T.M., Preisinger A.C., Smith K.J., Su L-K., Kinzler K.W., Vogelstein, B. Mutations of chromosome 5q21 gene in FAP and colorectal cancer patients. Science. 1991; 253: 665–669.
  61. Morin P.J., Sparks A.B., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K.W. Activation of b-catenin-Tcf signaling in colon cancer by mutations in b-catenin or APC. Science. 1997; 275: 1787–1790.
  62. Rodrigues P., Macaya I., Bazzocco S., Mazzolini R., Andretta E., Dopeso H., Mateo-Lozano S., Bilić J., Cartón-García F., Nieto R., Suárez-López L., Afonso E., Landolfi S., Hernandez-Losa
  63. J., Kobayashi K., Ramón y Cajal S., Tabernero J., Tebbutt N.C., Mariadason J.C., Schwartz S., Arango D. RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nat. Commun. 2014; 5: 5458.
  64. van Loosdregt J., Fleskens V., Tiemessen M.M., Mokry M., van Boxtel R., Meerding J., Pals C.E., Kurek D., Baert M.R., Delemarre E.M., Gröne A., Koerkamp M.J., Sijts A.J., Nieuwenhuis
  65. E.E., Maurice M.M., van Es J.H., Ten Berge D., Holstege F.C., Staal F.J., Zaiss D.M., Prakken B.J., Coffer P.J. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity. 2013; 39: 298–310.
  66. Keerthivasan S., Aghajani K., Dose M., Molinero L., Khan M.W., Venkateswaran V., Weber C., Emmanuel A.O., Sun T., Bentrem D.J., Mulcahy M., Keshavarzian A., Ramos E.M., Blatner N., Khazaie K., Gounari F. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci. Transl. Med. 2014; 26: 225–228.
  67. Bisson I., Prowse D.M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009; 19: 683–697.
  68. Francis J.C., Thomsen M.K., Taketo M.M., Swain A. β-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS. Genet. 2013; 9 (1): 1003180.
  69. Voeller H.J., Truica C.I., Gelmann E.P. Beta-catenin mutations in human prostate cancer. Cancer Res. 1998; 58: 2520–2523.
  70. Chesire D.R., Isaacs W.B. β-Catenin signaling in prostate cancer: an early perspective. Endocr. Relat. Cancer. 2003; 10: 537–560.
  71. Wan X., Liu J., Lu J-F., Tzelepi V., Yang J., Starbuck M.W., Diao L., Wang J., Efstathiou E., Vazquez E.S., Troncoso P., Maity S.N., Navone N.M. Activation of b-Catenin Signaling in Androgen Receptor-Negative Prostate Cancer Cells. Clin. Cancer Res. 2012; 18: 726–736.
  72. Lin R., Feng J., Dong S., Pan R., Zhuang H., Ding Z. Regulation of autophagy of prostate cancer cells by β-catenin signaling. Cell Physiol Biochem. 2015; 35 (3): 926–932.
  73. Guo J.Y., Xia B., White E. Autophagy-mediated tumor promotion. Cell. 2013; 155 (6): 1216–1219.
  74. Lee E., Madar A., David G., Garabedian M.J., Dasgupta R., Logan S.K. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc. Natl. Acad. Sci. USA. 2013; 110 (39): 15710–15715.
  75. Welker M.J.O., Orlov D.M.S. Thyroid Nodules. Am Fam Physician. 2003; 67 (3): 559–566.
  76. Kepal N., Patel M.D., Singh B. Genetic Considerations in Thyroid Cancer. Cancer Control. 2006; 13 (2): 111–118.
  77. Rao A.S., Kremenevskaja N., Resch J., Brabant G. Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/ beta-catenin signalling. Eur. J. Endocrinol. 2005; 153: 929–938.
  78. Garcia-Rostan G., Camp R.L., Herrero A., Carcangiu M.L., Rimm D.L., Tallini G. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 2001; 158: 987–996.
  79. Ishigaki K., Namba H., Nakashima M., Nakayama T., Mitsutake N., Hayashi T., Maeda S., Ichinose M., Kanematsu T., Yamashita S. Aberrant localization of beta-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2002; 87 (7): 3433–3440.
  80. Sastre-Perona A., Santisteban P. Role of the Wnt pathway in thyroid cancer. Front. Endocrinol. 2012; 3: 31.
  81. Liu M., Jiang L., Guan X.Y. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. J. Protein Cell. 2014; 5 (9): 673–691.
  82. Lade A.G., Monga S.P.S. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev. Dyn. 2011; 240 (3): 486–500.
  83. Lee H.C., Kim M., Wands J.R. Wnt/Frizzled signaling in hepatocellular carcinoma. Front. Biosci. 2006; 11: 1901–1915.
  84. Ma L., Wei W., Chua M-S., So S. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Gastrointest. Cancer. 2014; 4: 49–63.
  85. Zulehner G., Mikula M., Schneller D., van Zijl F., Huber H., Sieghart W., Grasl-Kraupp B., Waldhör T., Peck-Radosavljevic M., Beug H., Mikulits W. Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am. J. Pathol. 2010; 176: 472–481.

Views

Abstract - 219

PDF (Russian) - 46

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies