Intramedullary Elastic Transphyseal Tibial Osteosynthesis and Its Effect on Segmental Growth

Cover Page

Abstract


Background: Intramedullary transphyseal elastic osteosynthesis is used in children for the diseases accompanied by the reduced strength properties of bone tissue, and primarily for osteogenesis imperfecta.

Objective: The purpose of the experimental study was to investigate tibial growth under the conditions of transphyseal counter-directed insertion of elastic rods without bone integrity breaking, under transverse fracture modeling, as well as under combining transphyseal reinforcement and subperiosteal positioning the titanium mesh with the elastic rods intervolved in it.

Methods: Non-randomized controlled trial was performed. Three series of experiments performed in 18 puppies. Counter-directed transphyseal reinforcement of tibia performed in Series I,, transphyseal reinforcement combined with transverse osteotomy of leg bones — in Series II, transphyseal elastic osteosynthesis and subperiosteal positioning the titanium nickelide mesh with intervolved in it elastic rods during transverse leg bone osteotomy performed in Series III.

Results: Transphyseal reinforcement resulted in growth retardation of the operated tibia. The loss of residual growth was 3.8 mm (p =0.078) in series I; 7.8 mm (p =0.032) — in series II; 7.7 mm (p =0.042) — in series III. Eccentric insertion of transphyseal rods formed an angular deformity (mean value 7°; p =0.023) of the distal tibial epiphysis in the process of residual growth. Periosteal and endosteal reactions contributed to enlargement of diaphyseal diameter of 3.9 mm (series II; p =0.037) and 3.8 mm (series III; p =0.041). Any difference of diameter between operated and intact tibia was not observed in series I.

Conclusion: Intramedullary transphyseal reinforcement retards longitudinal bone growth. The positioning of the telescopic systems should be as close as possible to the center of growth plates in order to prevent angular deformities. Subperiosteal reinforcement doesn’t retard consolidation of fragments, and it can be combined with intramedullary transphyseal osteosynthesis


D. A. Popkov

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Author for correspondence.
Email: dpopkov@mail.ru

Russian Federation Kurgan

N. A. Kononovich

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Email: n.a.kononovich@mail.ru

Russian Federation Kurgan

E. R. Mingazov

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Email: edikmed@mail.ru

Russian Federation Kurgan

R. B. Shutov

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Email: shrb78@mail.ru

Russian Federation Kurgan

D. Barbier

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Email: d.barbier.mail@gmail.com

Russian Federation Kurgan

  1. Sofield H.A., Millar E.A. Fragmentation, realignment, and intramedullary rod fixation of deformities of the long bones in children. J. Bone Joint Surg. Am. 1959; 41: 1371–1391.
  2. Laron D., Pandya N.K. Advances in the orthopedic management of osteogenesis imperfecta. Orthop. Clin. North Am. 2013; 44 (4): 565–573.
  3. Metaizeau J.P. Sliding centro medullary nailing. Application to the treatment of severe forms of osteogenesis imperfecta. Chir. Pediatr. 1987; 28: 240–243.
  4. Hajdu S., Schwendenwein E., Kaltenecker G., László I., Lang S., Vécsei V., Sarahrudi K. The effect of drilling and screw fixation of the growth plate an experimental study in rabbits. J. Orthop. Res. 2011; 29 (12): 1834–1839.
  5. Fischerauer S., Kraus T., Wu X., Tandl S., Sorantin E., Hanzi A.C., Loffler J.F., Uggowitzer P.J., Weinberg A.M. In vivo degradation performance of micro arc oxidized implants: a micro CT study in rats. Acta Biomater. 2013; 9 (2): 5411–5420.
  6. Lascombes P. Flexible intramedullary nailing. Springer–Verlag: Berlin–Heidelberg. 2010. 310 p.
  7. Popkov D., Lascombes P., Berte N., Hetzel L., Ribeiro Baptista B., Popkov A., Journeau P. The normal radiological anteroposterior alignment of the lower limb in children. Skeletal Radiol. 2015 44 (2):197–206.
  8. Esposito P., Plotkin H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr. Opin. Pediatr. 2008. 20: 52–57.
  9. Ruck J., Dahan-Oliel N., Montpetit K., Rauch F., Fassier F. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J. Child Orthop. 2011; 5 (3): 217–224.
  10. Boutaud B., Laville J.M. L’embrochage centromédullaire coulissant dans l’ostéogenèse imparfaite. Rev. Chir. Orthop. 2004; 90: 304–311.
  11. El-Adl G., Khalil M.A., Enan A., Mostafa M.F., El-Lakkany M.R. Telescoping versus non-telescoping rods in the treatment of osteogenesis imperfecta. Acta Orthop. Belg. 2009; 75 (2): 200–208.
  12. Monti E., Mottes M., Fraschini P., Brunelli P.C., Forlino A., Venturi G. Doro F., Perlini S., Cavarzere P., Antoniazzi F. Current and emerging treatments for the management of osteogenesis imperfecta. Ther. Clin. Risk Manag. 2010; 6: 367–381.
  13. Mäkelä E.A., Vainionpää S., Vihtonen K., Mero M., Rokkanen P. The effect of trauma to the lower femoral epiphyseal plate. An experimental study in rabbits. J. Bone Joint Surg. Brit. 1988; 70 (2):ansen L.P., Steen H. Partial physeal arrest after temporary transphyseal pinning. A case report. Acta Orthop. 2008; 79 (6): 867–869.
  14. Langenhan R., Baumann M., Hohendorff B., Probst A., Trobisch P. Arthroscopically assisted reduction and internal fixation of a femoral anterior cruciate ligament osteochondral avulsion fracture in a 14 year old girl via transphyseal inside-out technique. Strategies Trauma Limb. Reconstr. 2013; 8 (3): 193–197.
  15. Yung P.S., Lam C.Y., Ng B.K., Lam T.P., Cheng J.C. Percutaneous transphyseal intramedullary Kirschner wire pinning: a safe and effective procedure for treatment of displaced diaphyseal forearm fracture in children. J. Pediatr. Orthop. 2004; 24 (1): 7–12.
  16. Guzzanti V., Falciglia F., Gigante A., Fabbriciani C. The effect of intra-articular ACL reconstruction on the growth plates of rabbits. J. Bone Joint Surg. Brit. 1994; 76 (6): 960–963.
  17. Ono T., Wada Y., Takahashi K., Tsuchida T., Minamide M., Moriya H. Tibial deformities and failures of anterior cruciate ligament reconstruction in immature rabbits. J. Orthop. Sci. 1998; 3 (3): 150–155.
  18. Seil R., Pape D., Kohn D. The risk of growth changes during transphyseal drilling in sheep with open physes. Arthroscopy. 2008; 24 (7): 824–833.
  19. Nicolaou N., Bowe J.D., Wilkinson J.M., Fernandes J.A., Bell M.J. Use of the Sheffield telescopic intramedullary rod system for the management of osteogenesis imperfecta: clinical outcomes at an average follow up of nineteen years. J. Bone Joint Surg. Am. 2011; 93 (21): 1994–2000.
  20. Babu L.V., Evans O., Sankar A., Davies A.G., Jones S., Fernandes J.A. Epiphysiodesis for limb length discrepancy: a comparison of two methods. Strategies Trauma Limb. Reconstr. 2014; 9 (1): 1–3.
  21. Stevens P.M. Guided growth: 1933 to the present. Strategies Trauma Limb. Reconstr. 2006; 1 (1): 29–35.
  22. Knorr P., Schmittenbecher P.P., Dietz H.G. Treatment of pathological fractures of long tubular bones in childhood using elastic stable intramedullary nailing. Unfallchirurg. 1996; 99 (6): 410–414.
  23. Popkov AV., Popkov DA. Bioaktivnye implantaty v travmatologii i ortopedii [Bioactive Implants in Traumatology and Orthopedics]. Irkutsk, NTsRVKh SO RAMN, 2012. 438 p.

Views

Abstract - 38

PDF (Russian) - 5

Cited-By


PlumX

Comments on this article

View all comments


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.