Biochemical and Signaling Functions of Plasmalogens in the Norm and in Various Diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Plasmalogens (PL) are alkenyl ether glycerophospholipids that perform many physiologically important functions in the body and have a variety of properties. The role of PLs as endogenous antioxidants is well studied, as well as PLs that determine the physicochemical properties of biomembranes, deposit polyunsaturated fatty acids, participate in cholesterol biosynthesis, the process of ferroptosis and adaptation of cells to hypoxia, are sources for the synthesis of platelet activating factor and act as its antagonists. At the same time, LPs are involved in the pathogenesis of neurodegenerative, inflammatory, oncological diseases and a number of other pathologies. These conditions are united by the development of chronic inflammation and oxidative stress, accompanied by a change in the activity of synthesis and the content of PL in cells. Despite the fact that PL replacement therapy inhibits inflammation, the molecular mechanisms of the association of PL with inflammation have not been fully elucidated. The purpose of this review is to summarize the latest literature data on the structure, biosynthesis, and functions of PL, their relationship with signaling cascades involved in the pathogenesis of chronic inflammatory and neuroinflammatory diseases, as well as to show current achievements and future prospects for the use of PL in the treatment of certain diseases.

Full Text

Restricted Access

About the authors

Oxana Yu. Kytikova

Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration — Research Institute of Medical Climatology and Rehabilitation Treatment

Author for correspondence.
Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-code: 3006-5614

MD, PhD

Russian Federation, Vladivostok

Tatyana P. Novgorodceva

Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration — Research Institute of Medical Climatology and Rehabilitation Treatment

Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-code: 5888-6099

PhD in Biology, Professor

Russian Federation, Vladivostok

Yulia K. Denisenko

Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration — Research Institute of Medical Climatology and Rehabilitation Treatment

Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-code: 4997-3432

PhD in Biology

Russian Federation, Vladivostok

References

  1. Jiménez-Rojo N, Riezman H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 2019:593(17):2378–2389. doi: https://doi.org/10.1002/1873-3468.13465
  2. Полякова С.И., Засурцев Г.В., Паршина П.В., и др. Перспективы диагностики и лечения дефицита плазмалогенов // Российский вестник перинатологии и педиатрии. — 2021. — Т. 66. — № 4. — С. 16–24. [Polyakova SI, Zasurcev GV, Parshina PV, et al. Prospects for the diagnosis and treatment of plasmalogen deficiency. Rossiyskiy Vestnik Perinatologii i Pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2021;66(4):16–24. (In Russ.)] doi: https://doi.org/10.21508/1027-4065-2021-66-4-16-24
  3. Almsherqi ZA. Potential Role of Plasmalogens in the Modulation of Biomembrane Morphology. Front Cell Dev Biol. 2021:9:673917. doi: https://doi.org/10.3389/fcell.2021.673917
  4. Bozelli JC Jr, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol. 2021;12:730829. doi: https://doi.org/10.3389/fphys.2021.730829
  5. Bozelli JC Jr, Epand RM. Interplay between cardiolipin and plasmalogens in Barth syndrome. J Inherit Metab Dis. 2022;45(1):99–110. doi: https://doi.org/10.1002/jimd.12449
  6. Dorninger F, Forss-Petter S, Wimmer I, et al. Plasmalogens, platelet-activating factor and beyond – Ether lipids in signaling and neurodegeneration. Neurobiol Dis. 2020;145:105061. doi: https://doi.org/10.1016/j.nbd.2020.105061
  7. Zhuo R, Rong P, Wang J, et al. The Potential Role of Bioactive Plasmalogens in Lung Surfactant. Front Cel Dev Bio. 2021;9:618102. doi: https://doi.org/10.3389/fcell.2021.618102
  8. Das UN. Bioactive lipids as mediators of the beneficial action(s) of mesenchymal stem cells in COVID-19. Aging Dis. 2020;11:746–755. doi: https://doi.org/10.14336/AD.2020.0521
  9. Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicina (Kaunas). 2019;55(6):284. doi: https://doi.org/10.3390/medicina55060284
  10. Okumoto K, Tamura S, Honsho M, Fujiki Y. Peroxisome: Metabolic Functions and Biogenesis. Adv Exp Med Biol. 2020;1299:3–17. doi: https://doi.org/10.1007/978-3-030-60204-8_1
  11. Ikuta A, Sakurai T, Nishimukai M, et al. Composition of plasmalogens in serum lipoproteins from patients with non-alcoholic steatohepatitis and their susceptibility to oxidation. Clin Chim Acta. 2019;493:1–7. doi: https://doi.org/10.1016/j.cca.2019.02.020
  12. Wu Y, Chen Z, Darwish WS, et al. Choline and Ethanolamine Plasmalogens Prevent Lead-Induced Cytotoxicity and Lipid Oxidation in HepG2 Cells. J Agric Food Chem. 2019;67(27):7716–7725. doi: https://doi.org/10.1021/acs.jafc.9b02485
  13. Pohl EE, Jovanovic O. The role of phosphatidylethanolamine adducts in modification of the activity of membrane proteins under oxidative stress. Molecules. 2019;24(24):4545. doi: https://doi.org/10.3390/molecules24244545
  14. Саркисян В.А., Сидорова Ю.С., Петров Н.А., и др. Исследование физиолого-биохимической эффективности плазмалогенов и астаксантина в микрокапсулированной форме // Вопросы питания. — 2021. — Т. 90. — № 5. — С. 38–48. [Sarkisyan VA, Sidorova YuS, Petrov NA, et al. Investigation of the physiological and biochemical effectiveness of plasmalogens and astaxanthin in microencapsulated form. Voprosy pitaniia [Problems of Nutrition]. 2021;90(5):38–48. (In Russ.)] doi: https://doi.org/10.33029/0042-8833-2021-90-5-38-48
  15. Jimenez-Rojo N, Riezman H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 2019:593(17):2378–2389. doi: https://doi.org/10.1002/1873-3468.13465
  16. Angelova A, Angelov B, Drechsler M, et al. Plasmalogen-Based Liquid Crystalline Multiphase Structure Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes. Front Cel Dev Biol. 2021;9:617984. doi: https://doi.org/10.3389/fcell.2021.617984
  17. Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cel Dev Biol. 2021;9:630242. doi: https://doi.org/10.3389/fcell.2021.630242
  18. Ali F, Hossain MS, Abdeen A, et al. Plasmalogens ensure the stability of non-neuronal (microglial) cells during long-term cytotoxicity. Environ Sci Pollut Res Int. 2022;29(2):2084–2097. doi: https://doi.org/10.1007/s11356-021-15773-7
  19. Ali F, Hossain MS, Sejimo S, Akashi K. Plasmalogens Inhibit Endocytosis of Toll-like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. Mol Neurobiol. 2019;56(5):3404–3419. doi: https://doi.org/10.1007/s12035-018-1307-2
  20. Lordan R, Tsoupras A, Zabetakis I, et al. Forty Years since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives. Molecules. 2021;24(23):4414. doi: https://doi.org/10.3390/molecules24234414
  21. Уксуменко А.А., Антонюк М.В., Денисенко Ю.К., и др. Взаимосвязь клинико-функциональных параметров и липидных маркеров системного воспаления у больных легкой бронхиальной астмой в сочетании с ожирением // Бюллетень физиологии и патологии дыхания. — 2022. — № 83. — С. 22–30. [Uksumenko AA, Antonyuk MV, Denisenko YuK, et al. Association between the clinical-functional parameters and lipid markers of systemic inflammation in mild asthma complicated with obesity. Bulletin Physiology and Pathology of Respiration. 2022;83:22–30. (In Russ.)] doi: https://doi.org/10.36604/1998-5029-2022-83-22-30
  22. Hossain MS, Mawatari S, Fujino T. Plasmalogens inhibit neuroinflammation and promote cognitive function. Brain Res Bull. 2023;192:56–61. doi: https://doi.org/10.1016/j.brainresbull.2022.11.005
  23. Hossain MS, Mawatari S, Fujino T. Plasmalogens, the Vinyl Ether-Linked Glycerophospholipids, Enhance Learning and Memory by Regulating Brain-Derived Neurotrophic Factor. Front Cell Dev Biol. 2022;10:828282. doi: https://doi.org/10.3389/fcell.2022.828282
  24. Fontaine D, Figiel S, Felix R, et al. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res. 2020;61:840–858. doi: https://doi.org/10.1194/jlr.ra120000634
  25. Pérez HA, Alarcón LM, Verde AR, et al. Effect of cholesterol on the hydration properties of ester and ether lipid membrane interphases. Biochim Biophys Acta Biomembr. 2021;1863(1):183489. doi: https://doi.org/10.1016/j.bbamem.2020.183489
  26. Zou Y, Henry WS, Ricq EL, et al. Plasticity of Ether Lipids Promotes Ferroptosis Susceptibility and Evasion. Nature. 2020;585:603–608. doi: https://doi.org/10.1038/s41586-020-2732-8
  27. Cui W, Liu D, Gu W, Chu B. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. Cell Death Differ. 2021;28(8):2536–2551. doi: https://doi.org/10.1038/s41418-021-00769-0
  28. Lee H, Zhuang L, Gan B. Ether phospholipids govern ferroptosis. J Genet Genomics. 2021;48(7):517–519. doi: https://doi.org/10.1016/j.jgg.2021.05.003
  29. Jain IH, Calvo SE, Markhard AL, et al. Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism. Cell. 2020;181:716–727. doi: https://doi.org/10.1016/j.cell.2020.03.029
  30. Ruiz M, Cuillerier A, Daneault C, et al. Lipidomics unveils lipid dyshomeostasis and low circulating plasmalogens as biomarkers in a monogenic mitochondrial disorder. JCI Insight. 2019;4(14):е123231. doi: https://doi.org/10.1172/jci.insight.123231
  31. Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front Physiol. 2020;11:598. doi: https://doi.org/10.3389/fphys.2020.00598
  32. Kleiboeker B, Lodhi IJ. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol Metab. 2022;65:101577. doi: https://doi.org/10.1016/j.molmet.2022.101577
  33. Zhou Y, Yu N, Zhao J, et al. Advances in the Biosynthetic Pathways and Application Potential of Plasmalogens in Medicine. Front Cell Dev Biol. 2020;8:765. doi: https://doi.org/10.3389/fcell.2020.00765
  34. Jo DS, Park NY, Cho DH. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med. 2020;52(9):1486–1495. doi: https://doi.org/10.1038/s12276-020-00503-9
  35. Senanayake V, Goodenowe DB. Plasmalogen deficiency and neuropathology in Alzheimer’s disease: Causation or coincidence? Alzheimers Dement (N Y). 2019;5:524–532. doi: https://doi.org/10.1016/j.trci.2019.08.003
  36. Кытикова О.Ю., Гвозденко Т.А., Антонюк М.В., и др. Плазмалогены в патофизиологии возрастзависимых заболеваний // Успехи геронтологии. — 2019. — № 6. — С. 948–958. [Kytikova OYu, Gvozdenko TA, Antonyuk MV, i dr. Plazmalogeny v patofiziologii vozrastzavisimyh zabolevanij. Uspekhi gerontologii. 2019;6:948–958. (In Russ.)].
  37. Fernandes AMAP, Messias MCF, Duarte GHB, et al. Plasma Lipid Profile Reveals Plasmalogens as Potential Biomarkers for Colon Cancer Screening. Metabolites. 2020;10(6):262. doi: https://doi.org/10.3390/metabo10060262
  38. Liu T, Tan Z, Yu J, et al. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev Proteomics. 2020;17(3):233–242. doi: https://doi.org/10.1080/14789450.2020.1757443
  39. Liu W, Chakraborty B, Safi R, et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 2021;12(1):5103. doi: https://doi.org/10.1038/s41467-021-25354-4
  40. Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A Potential Therapeutic Target for Neurodegenerative and Cardiometabolic Disease. Prog Lipid Res. 2019;74:186–195. doi: https:// doi: 10.1016/j.plipres.2019.04.003
  41. Pham TH, Manful CF, Pumphrey RP, et al. Big Game Cervid Meat as a Potential Good Source of Plasmalogens for Functional Foods. Journal of Food Composition and Analysis. 2021;96(12):103724. doi: https://doi.org/10.1016/j.jfca.2020.103724
  42. Fujino T, Hossain MS, Mawatari S. Therapeutic Efficacy of Plasmalogens for Alzheimer’s Disease, Mild Cognitive Impairment, and Parkinson’s Disease in Conjunction with a New Hypothesis for the Etiology of Alzheimer’s Disease. Adv Exp Med Biol. 2020;1299:195–212. doi: https://doi.org/10.1007/978-3-030-60204-8_14
  43. Mawatari S, Ohara S, Taniwaki Y, et al. Improvement of Blood Plasmalogens and Clinical Symptoms in Parkinson’s Disease by Oral Administration of Ether Phospholipids: A Preliminary Report. Parkinsons Dis. 2020;2020:2671070. doi: https://doi.org/10.1155/2020/2671070
  44. Mawatari S, Sasuga Y, Morisaki T, et al. Identification of plasmalogens in Bifidobacterium longum, but not in Bifidobacterium animalis. Sci Rep. 2020;10(1):427. doi: https://doi.org/10.1038/s41598-019-57309-7
  45. Goodenowe DB, Haroon J, Kling MA, et al. Targeted Plasmalogen Supplementation: Effects on Blood Plasmalogens, Oxidative Stress Biomarkers, Cognition, and Mobility in Cognitively Impaired Persons. Front Cell Dev Biol. 2022;10:864842. doi: https://doi.org/10.3389/fcell.2022.864842
  46. Gu J, Chen L, Sun R, et al. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front Mol Biosci. 2022;9:815320. doi: https://doi.org/10.3389/fmolb.2022.815320
  47. Marsh KG, Arrieta A, Thuerauf DJ, et al. The peroxisomal enzyme, FAR1, is induced during ER stress in an ATF6-dependent manner in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2021;320(5):H1813–H1821. doi: https://doi.org/10.1152/ajpheart.00999.2020
  48. Jenkins CM, Yang K, Liu G, et al. Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. J Biol Chem. 2019;293(22):8693–8709. doi: https://doi.org/10.1074/jbc.RA117.001629.9
  49. Rong P, Wang J-L, Angelova A, et al. Plasmalogenic Lipid Analogs as Platelet-Activating Factor Antagonists: A Potential Novel Class of Anti-inflammatory Compounds. Front Cell Dev Biol. 2022;10:859421. doi: https://doi.org/10.3389/fcell.2022.859421
  50. Hayashi D, Mouchlis VD, Dennis EA. Each phospholipase A2 type exhibits distinct selectivity toward sn-1 ester, alkyl ether, and vinyl ether phospholipids. Biochim Biophys Acta, Mol Cell Biol Lipids. 2022;1867(1):159067. doi: https://doi.org/10.1016/j.bbalip.2021.159067
  51. Leuti A, Fazio D, Fava M, et al. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev. 2020;159:133–169. doi: https://doi.org/10.1016/j.addr.2020.06.028
  52. Amunugama K, Jellinek MJ, Kilroy MP, et al. Identification of novel neutrophil very long chain plasmalogen molecular species and their myeloperoxidase mediated oxidation products in human sepsis. Redox Biol. 2021;48:102208. doi: https://doi.org/10.1016/j.redox.2021.102208
  53. Shakya S, Pyles KD, Albert CJ, et al. Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes. Redox Biol. 2022;59:102557. doi: https://doi.org/10.1016/j.redox.2022.102557
  54. Осипенко АН. Плазмалогенные фосфолипиды в интактных и пораженных атеросклерозом артериях. Веснік Магілёўскага дзяржаўнага ўніверсітэта імя А.А. Куляшова. Сер. B. Прыродазнаўчыя навукі: матэматыка, фізіка, біялогія. — 2020. — № 2 (56). — С. 70–78. [Osipenko AN. Plazmalogennye fosfolipidy v intaktnyh i porazhennyh aterosklerozom arteriyah. Vesnіk Magіlyoўskaga dzyarzhaўnaga ўnіversіteta іmya A.A. Kulyashova. Ser. B. Pryrodaznaўchyya navukі: matematyka, fіzіka, bіyalogіya. 2020;2(56):70–78. (In Russ.)].
  55. Vítová M, Palyzová A, Řezanka T. Plasmalogens — Ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Prog Lipid Res. 2021;83:101111. doi: https://doi.org/10.1016/j.plipres.2021.101111
  56. Morel Y, Hegdekar N, Sarkar C, et al. Structure-specific, accurate quantitation of plasmalogen glycerophosphoethanolamine. Anal Chim Acta. 2021;1186:339088. doi: https://doi.org/10.1016/j.aca.2021.339088
  57. Fujiki Y, Okumoto K, Honsho M, et al. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. Biochim Biophys Acta Mol Cell Res. 2022;1869(11):119330. doi: https://doi.org/10.1016/j.bbamcr.2022.119330
  58. Maeda S, Mohri T, Inoue T, et al. Synthesis of a plasmenylethanolamine. Biosci Biotechnol Biochem. 2021;85(6):1383–1389. doi: https://doi.org/10.1093/bbb/zbab037
  59. Honsho M, Mawatari S, Fujiki Y. ATP8B2-Mediated Asymmetric Distribution of Plasmalogens Regulates Plasmalogen Homeostasis and Plays a Role in Intracellular Signaling. Front Mol Biosci. 2022;9:915457. doi: https://doi.org/10.3389/fmolb.2022.915457
  60. Honsho M, Okumoto K, Tamura S, et al. Peroxisome Biogenesis Disorders. Adv Exp Med Biol. 2020;1299:45–54. doi: https://doi.org/10.1007/978-3-030-60204-8_4
  61. Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020;10(3):190290. doi: https://doi.org/10.1098/rsob.190290
  62. Koch J, Watschinger K, Werner ER, et al. Tricky Isomers-The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol. 2022;10:864716. doi: https://doi.org/10.3389/fcell.2022.864716
  63. Karadayi R, Mazzocco J, Leclere L, et al. Plasmalogens Regulate Retinal Connexin 43 Expression and Müller Glial Cells Gap Junction Intercellular Communication and Migration. Front Cell Dev Biol. 2022;10:864599. doi: https://doi.org/10.3389/fcell.2022.864599
  64. Sordillo JE, Lutz SM, Kelly RS, et al. Plasmalogens Mediate the Effect of Age on Bronchodilator Response in Individuals with Asthma. Front Med (Lausanne). 2020;7:38. doi: https://doi.org/10.3389/fmed.2020.00038
  65. McHowat J, Shakya S, Ford DA. 2-Chlorofatty aldehyde elicits endothelial cell activation. Front Physiol. 2020;11:460. doi: https://doi.org/10.3389/fphys.2020.00460
  66. Pike DP, Vogel MJ, McHowat J, et al. 2-Chlorofatty acids are biomarkers of sepsis mortality and mediators of barrier dysfunction in rats. J Lipid Res. 2020;61(7):1115–1127. doi: https://doi.org/10.1194/jlr.RA120000829
  67. Yu H, Liu Y, Wang M, et al. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis. Am J Physiol Heart Circ Physiol. 2020;319(3):H705–H721. doi: https://doi.org/10.1152/ajpheart.00440.2020
  68. Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors. 2022;48(6):1203–1216. doi: https://doi.org/10.1002/biof.1916
  69. Aldrovandi M, Fedorova M, Conrad M. Juggling with lipids, a game of Russian roulette. Trends Endocrinol Metab. 2021;32(7):463–473. doi: https://doi.org/10.1016/j.tem.2021.04.012
  70. Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, et al. Plasmalogens and Photooxidative Stress Signaling in Myxobacteria, and How it Unmasked CarF/TMEM189 as the Δ1’-Desaturase PEDS1 for Human Plasmalogen Biosynthesis. Front Cell Dev Biol. 2022;10:884689. doi: https://doi.org/10.3389/fcell.2022.884689
  71. Alim I, Caulfield JT, Chen Y, et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell. 2019;177(5):1262–1279. doi: https://doi.org/10.1016/j.cell.2019.03.032
  72. Vallerga CL, Zhang F, Fowdar J, et al. Analysis of DNA methylation associates the cysteine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat Commun. 2020;11(1):11238. doi: https://doi.org/10.1038/s41467-020-15065-7
  73. Balgoma D, Hedeland M. Etherglycerophospholipids and ferroptosis: structure, regulation, and location. Trends Endocrinol Metab. 2021;32(12):960–962. doi: https://doi.org/10.1016/j.tem.2021.08.005
  74. Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188394. doi: https://doi.org/10.1016/j.bbcan.2020
  75. Li Y, Zhao L, Li XF. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304. doi: https://doi.org/10.1177/15330338211036304
  76. Wilson KA, Fairweather SJ, MacDermott-Opeskin HI, et al. The role of plasmalogens, Forssman lipids, and sphingolipid hydroxylation in modulating the biophysical properties of the epithelial plasma membrane. J Chem Phys. 2021;154(9):095101. doi: https://doi.org/10.1063/5.0040887
  77. West A, Zoni V, Teague WEJr, et al. How do ethanolamine plasmalogens contribute to order and structure of neurological membranes? J Phys Chem B. 2020;124:828–839. doi: https://doi.org/10.1021/acs.jpcb.9b08850
  78. Malheiro AR, Correia B, Ferreira da Silva T, et al. Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1-myristyl ether treatment. Brain Pathol. 2019;29(5):622–639. doi: https://doi.org/10.1111/bpa.12710
  79. Ferreira da Silva T, Granadeiro LS, Bessa-Neto D, et al. Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment. Prog Neurobiol. 2021;205:102123. doi: https://doi.org/10.1016/j.pneurobio.2021.102123
  80. Youssef M, Ibrahim A, Akashi K, et al. PUFA-Plasmalogens Attenuate the LPS-Induced Nitric Oxide Production by Inhibiting the NF-kB, p38 MAPK and JNK Pathways in Microglial Cells. Neuroscience. 2019;397:18–30. doi: https://doi.org/10.1016/j.neuroscience.2018.11.030
  81. Che H, Zhang L, Ding L, et al. EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct. 2020;11(2):1729–1739. https://doi: 10.1039/c9fo02323b
  82. Palladino END, Hartman CL, Albert CJ, et al. The chlorinated lipidome originating from myeloperoxidase-derived HOCl targeting plasmalogens: Metabolism, clearance, and biological properties. Arch Biochem Biophys. 2018;641:31–38. doi: https://doi.org/10.1016/j.abb.2018.01.010
  83. Tamiya-Koizumi K, Otoki Y, Nakagawa K, et al. Cellular concentrations of plasmalogen species containing a polyunsaturated fatty acid significantly increase under hypoxia in human colorectal cancer, Caco2 cells. Biochem Biophys Res Commun. 2022;611:1–7. doi: https://doi.org/10.1016/j.bbrc.2022.04.061
  84. Astudillo AM, Balboa MA, Balsinde J. Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res. 2022;89:101207. doi: https://doi.org/10.1016/j.plipres.2022.101207
  85. Abe Y, Honsho M, Kawaguchi R, et al. A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. J Biol Chem. 2020;295(16):5321–5334. doi: https://doi.org/10.1074/jbc.RA119.011989
  86. Su XQ, Wang J, Sinclair AJ. Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis. 2019;18(1):100. doi: https://doi.org/10.1186/s12944-019-1044-1
  87. Otto A-C, Gan-Schreier H, Zhu X, et al. Group VIA phospholipase A2 deficiency in mice chronically fed with high-fat-diet attenuates hepatic steatosis by correcting a defect of phospholipid remodeling. Biochim Biophys Acta. 2019;1864(5):662–676. doi: https://doi.org/10.1016/j.bbalip.2019.01.012
  88. Denisenko Y, Novgorodtseva T, Ermolenko E, et al. Blood plasma molecular species of ethanolamine plasmalogens in asthma complicated with obesity. Am J Respir Crit Care Med. 2021;203:A4320 doi: https://doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4320
  89. Denisenko Y, Antonyuk M, Yurenko A, et al. 1-О-alkyl-glycerols reduce level of inflammatory cytokines in obese asthma. European Respiratory Journal. 2021;58(65). doi: https://doi.org/10.1183/13993003.congress-2021.PA2138
  90. Denisenko Y, Novgorodtseva T, Vitkina T, et al. Associations of fatty acid composition in leukocyte membranes with systemic inflammation in chronic obstructive pulmonary disease progression. Russian Open Medical Journal. 2022;11(4). doi: https://doi.org/10.15275/rusomj.2022.0401
  91. Ben Anes A, Ben Nasr H, Tabka Z, et al. Plasma Lipid Profiling Identifies Phosphatidylcholine 34:3 and Triglyceride 52:3 as Potential Markers Associated with Disease Severity and Oxidative Status in Chronic Obstructive Pulmonary Disease. Lung. 2022;200(4):495–503. doi: https://doi.org/10.1007/s00408-022-00552-z
  92. Hang D, Zeleznik OA, Lu J, et al. Plasma metabolomic profiles for colorectal cancer precursors in women. Eur J Epidemiol. 2022;37(4):413–422. doi: https://doi.org/10.1007/s10654-021-00834-5
  93. Nguma E, Yamashita S, Kumagai K, et al. Ethanolamine Plasmalogen Suppresses Apoptosis in Human Intestinal Tract Cells in vitro by Attenuating Induced Inflammatory Stress. ACS Omega. 2021;6(4):3140–3148. doi: https://doi.org/10.1021/acsomega.0c05545
  94. Di’Narzo AF, Houten SM, Kosoy R, et al. Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets. Gastroenterology. 2022;162(3):828–843. doi: https://doi.org/10.1053/j.gastro.2021.11.015
  95. Li H, Xu Q-Y, Xie Y, et al. Effects of chronic HBV infection on lipid metabolism in non-alcoholic fatty liver disease: A lipidomic analysis. Ann Hepatol. 2021;24:100316. doi: https://doi.org/10.1016/j.aohep.2021.100316
  96. Bezrodny SL, Mardanly SG, Zatevalov AM, et al. Assessment of the state of intestinal microbiocenosis based on bacterial endotoxin and plasmalogen in elderly persons with type 2 diabetes mellitus pathology. Klin Lab Diagn. 2021;66(9):565–570. doi: https://doi.org/10.51620/0869-2084-2021-66-9-565-570
  97. de Mello VD, Selander T, Lindström J, et al. Serum Levels of Plasmalogens and Fatty Acid Metabolites Associate with Retinal Microangiopathy in Participants from the Finnish Diabetes Prevention Study. Nutrients. 2021;13(12):4452. doi: https://doi.org/10.3390/nu13124452
  98. Chai JC, Deik AA, Hua S, et al. Association of lipidomic profiles with progression of carotid artery atherosclerosis in HIV infection. JAMA Cardiol. 2019;4(12):1239–1249. doi: https://doi.org/10.1001/jamacardio.2019.4025
  99. Schooneveldt YL, Paul S, Calkin AC, et al. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol. 2022;13:841278. doi: https://doi.org/10.3389/fphys.2022.841278
  100. Beyene HB, Olshansky GT, Smith AA, et al. Highcoverage plasma lipidomics reveals novel sexspecific lipidomic fingerprints of age and BMI: evidence from two large population cohort studies. PLoS Biol. 2020;18:е3000870. doi: https://doi.org/10.1371/journal.pbio.3000870
  101. Lange M, Angelidou G, Ni Z, et al. AdipoAtlas: a reference lipidome for human white adipose tissue. Cell Rep. Med. 2021;2(10):100429. doi: https://doi.org/10.1016/j.xcrm.2021.100407
  102. Fallatah W, Smith T, Cui W, et al. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech. 2020;13(1):dmm042499. doi: https://doi.org/10.1242/dmm.042499
  103. Saitoh M, Itoh M, Takashima S, et al. Phosphatidyl ethanolamine with increased polyunsaturated fatty acids in compensation for plasmalogen defect in the Zellweger syndrome brain. Neurosci Lett. 2009;449:164–167. doi: https://doi.org/10.1016/j.neulet.2008.11.004
  104. Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, еt al. The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress? Cell Stress Chaperones. 2021;26(6):871–887. doi: https://doi.org/10.1007/s12192-021-01231-3
  105. Sun E, Motolani A, Campos L, еt al. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci. 2022;23(16):8972. doi: https://doi.org/10.3390/ijms23168972
  106. Kimura T, Kimura AK, Ren M, et al. Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Sci Alliance. 2019;2(4):e201900348. doi: https://doi.org/10.26508/lsa.201900348
  107. Meletis CD. Alkyl-Acylglycerols and the Important Clinical Ramifications of Raising Plasmalogens in Dementia and Alzheimer’s Disease. Integr Med (Encinitas). 2020;19(3):12–16.
  108. Feng J, Song G, Shen Q, et al. Protect effects of seafood-derived plasmalogens against amyloid-beta (1-42) induced toxicity via modulating the transcripts related to endocytosis, autophagy, apoptosis, neurotransmitter release and synaptic transmission in SH-SY5Y cells. Front Aging Neurosci. 2021;13:773713. doi: https://doi.org/10.3389/fnagi.2021.773713
  109. Park JE, Kim HJ, Kim YE, et al. Analysis of dementia-related gene variants in APOE ε4 noncarrying Korean patients with early-onset Alzheimer’s disease. Neurobiol. Aging. 2020;85:155.e5–155.e8. doi: https://doi.org/10.1016/j.neurobiolaging.2019.05.009
  110. Domenici MR, Ferrante A, Martire A, et al. Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res. 2019;147:104338. doi: https://doi.org/10.1016/j.phrs.2019.104338
  111. Rieger MA, King DM, Crosby H, et al. CLIP and massively parallel functional analysis of CELF6 reveal a role in destabilizing synaptic gene mRNAs through interaction with 3’. UTR elements. Cell Rep. 2020;33(12):108531. doi: https://doi.org/10.1016/j.celrep.2020.108531
  112. Mollenhauer B, von Arnim CAF. Toward preventing Parkinson’s disease. Science. 2022;377(6608):818–819. doi: https://doi.org/10.1126/science.add7162
  113. Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. Handb Clin Neurol. 2022;184:481–495. doi: https://doi.org/10.1016/B978-0-12-819410-2.00025-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Alkenyl phospholipids (plasmalogens): R1 is a hydrocarbon fragment of fatty alcohols and aldehydes; R2 - hydrocarbon fragments of fatty acids; X - ethanolamine, choline or serine

Download (29KB)
3. Fig. 2. Plasmalogen biosynthesis pathway: Plasmalogen. In Wikipedia. https://cs.wikipedia.org/wiki/Plazmalogen Created: 2019-10-29. Updated: 2019-10-29 11:40:16. License: CC BY-SA 4.0.Usage terms: Creative Commons Attribution-Share Alike 4.0. Credit: Own work | Phaeton68 FAR1 (fatty alcohol reductase 1) - reductase of fatty alcohols; GNPAT (glycerone phosphate O-acyltransferase) - glycerone phosphate acyltransferase; AGPS (alkylglycerone phosphate synthase) - alkylglycerone phosphate synthase; acyl / alkyl DHAP reductase - alkylacyl DHAP reductase

Download (213KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies