Parametabolism as Non-Specific Modifier of Supramolecular Interactions in Living Systems

Cover Page


Cite item

Full Text

Abstract

As it became known recently, in addition to the enzyme (enzymes and/or ribozymes) in living organisms occur a large number of ordinary chemical reactions without the participation of biological catalysts. These reactions are distinguished by low speed and, as a rule, the irreversibility. For example, along with diabetes mellitus, glycation and fructosilation of proteins are observed resulted in posttranslational modification with the low- or nonfunctioning protein formation which is poorly exposed to enzymatic proteolysis and therefore accumulates in the body. In addition, the known processes such as the nonenzymatic carbomoylation, pyridoxylation and thiamiation proteins. There is a reasonable basis to believe that alcoholic injury also realized through parametabolic secondary metabolites synthesis such as acetaldehyde. At the same time, the progress in supramolecular chemistry proves that in biological objects there is another large group of parametabolic reactions caused by the formation of supramolecular complexes. Obviously, known parameterizes interactions can modify the formation of supramolecular complexes in living objects. These processes are of considerable interest for fundamental biology and fundamental and practical medicine, but they remain unexplored due to a lack of awareness of a wide range of researchers.

About the authors

V. A. Kozlov

I.N. Ul’ianov Chuvash State University

Author for correspondence.
Email: pooh12@yandex.ru
Cheboksary Россия

S. P. Sapozhnikov

I.N. Ul’ianov Chuvash State University

Email: adaptagon@mail.ru
Cheboksary Россия

A. I. Sheptuhina

I.N. Ul’ianov Chuvash State University

Email: priffetik@bk.ru
Cheboksary Россия

A. V. Golenkov

I.N. Ul’ianov Chuvash State University

Email: golenkova@inbox.ru
Cheboksary Россия

References

  1. Lehn J.-M. Supramolecular Chemistry-Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1990; 29 (11): 1304–1319. doi: 10.1002/anie.199013041.
  2. Pennisi E. Inching toward the 3D genome. Science. 2015; 347 (6217): 10. doi: 10.1126/science.347.6217.10.
  3. Lehn J.-M. Supramolecular chemistry: Concepts and perspectives. VCH: Weinheim. 1995. P 1–6.
  4. Hammouda A.M., Mady G.E. Correction formula for carbamylated haemoglobin in diabetic uraemic patients. Ann. Clin. Biochem. 2001; 38 (Pt. 2): 115–119.
  5. Maillard L.C. Genese des matieres proteiques et des matières humiques: action de la glycérine et des sucres sur les acides amines. P aris: Masson. 1913. 220 p.
  6. Wrodnigg T.M., Eder B. The Amadori and Heyns Rearrangements: Landmarks in the History of Carbohydrate Chemistry or Unrecognized Synthetic Opportunities? Topics Curr. Chem. 2001; 215: 115–152.
  7. Ahmed N., Babaei-Jadidi R., Howell S.K., Beisswenger P.J., Thornalley P.J. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 2005; 48: 1590–1603.
  8. Babaei-Jadidi R., Karachalias N., Ahmed N., Battah S., Thornalley P.J. Prevention of incipient diabetic nephropathy by high dose thiamine and benfotiamine. Diabetes. 2003; 52: 2110–2120.
  9. Ansari N.A., Rashid H. The Nonenzymatic glycation of proteins: from diabetes to cancer. Biomed. Chem. (Russia). 2010; 56 (2): 168–178.
  10. The scientific basis for healthy aging and antiaging processes. A. Sharman, J. Jumadilovper (eds.). New York: Mary Ann Liebert, Inc. 2011. 184 p.
  11. Koenig B.S., Peterson C.M., Kilo C., Cerami A., Williamson J.R. Hemoglobin A1C as an indicator of the degree of glucose intolerance in diabetes. Diabetes. 1976; 25: 230–232.
  12. Sell D.R., Lane M.A., Johnson W.A., Masoro E.J., Mock O.B., Reiser K.M., Fogarty J.F., Cutler R.G., Ingram D.K., Roth G.S., Monnier V.M. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 485–490.
  13. Pat. No.: 2203087 USA, IPC A61K C07K Method and device for obtaining cell free substitute for red blood cells. R.E. Dewoskin, M.D. Doubleday (eds.). Applicant and patentee of the Northfield Laboratories. NY. Appl. 27.03.1997, publ. 20.08.2000.
  14. Mabuchi R., Kurita A., Miyoshi N., Yokoyama A., Furuta T., Goda T., Suwa Y., Kan T., Amagai T., Ohshima H. Analysis of N(e) ethyl lysine in human plasma proteins by gas chromatography
  15. negative ion chemical ionization/mass spectrometry as a biomarker for exposure to acetaldehyde and alcohol. Alcohol Clin. Exp. Res. 2012; 36 (6): 1013–1020.
  16. Jang M.H., Piao X.L, Kim H.Y., Cho E.J., Baek S.H., Kwon S.W., Park J.H. Resveratrol oligomers from Vitis amurensis attenuate beta amyloid induced oxidative stress in PC12 cells. Biol. Pharm. Bull. 2007; 30: 1130–1134.
  17. Savaskan E., Olivieri G., Meier F., Seifritz E., Wirz-Justice A., Muller-Spahn F. Red wine ingredient resveratrol protects from beta amyloid neurotoxicity. Gerontology. 2003; 49: 380–383.
  18. Kozlov V.A., Sapozhnikov S.P. Golenkov A.C., Sheptuhina A.I. The comparative analysis of various amyloid models. Annals of the Russian Academy of Medical Sciences. 2015. №1. С. 5–11.
  19. Kozlov V.A., Golenkov A.C., Sapozhnikov S.P. Minor impurities consumption of alcohol as the cause of death of the population of Russia. Narcology (Russia). 2013; 9: 66–70.
  20. Yakovleva L.M., Sapozhnikov S.P. Structural changes of the small intestine and absorption of chemical elements in experimental alcoholic intoxication. Narcology (Russia). 2012; 11: 9 (129): 44–47.
  21. Semba R.D., Ferrucci L., Bartali B., Urpí-Sarda M., Zamora-Ros R., Sun K., Cherubini A., Bandinelli S., Andres-Lacueva C. Resveratrol levels and all cause mortality in older community dwelling adults. JAMA Intern. Med. 2014; 174 (7): 1077–1084.
  22. Kozlov V.A., Novikov K.V., Mokeeva T.G., Kuz’mina S.A. Cyclocondensation of oxoacids with urea. Russian J. General Chem. 2013; 83 (7): 1467–1468.
  23. Degli S., Nicholson D. An Introduction to Metabolic Pathways. New York. 1970. 310 p.
  24. Kozlovskaya L.C., Rameev V.V., Sarkisova I.A. Amyloidosis in the elderly. Clin. Med.: Scientific-Pract. J. 2005; 83 (6): 12–20.
  25. Leslie M. Searching for the secrets of the super old. Science. 2008; 321: 1764–1765.
  26. Chiu K., So K.F., Chuen-Chung Ch. R. Progressive Neurodegeneration of Retina in Alzheimer’s disease Are β-Amyloid Peptide and Tau New Pathological Factors in Glaucoma? Glaucoma. Basic & Clin. Aspects. 2013. URL: http://www.intechopen.com/books/glaucoma-basic-and-clinical-aspects/progressive-neurodegeneration-of-retina-in-alzheimer-s-disease-are-amyloid-peptideand-tau-new-patho (available: 10.04.2015).
  27. Vattemi G., Nogalska A., King Engel W., D’Agostino C., Checler F., Askanas V. Amyloid beta 42 is preferentially accumulated in muscle fibers of patients with sporadic inclusion body myositis. Acta Neuropathol. 2009; 117 (5): 569–574.
  28. Gomperts S.N., Rentz D.M., Moran E., Becker J.A., Locascio J.J., Klunk W.E., Mathis C.A., Elmaleh D.R., Shoup T., Fischman A.J., Hyman B.T., Growdon J.H., Johnson K.A. Imaging amyloid deposition in Lewy body diseases. Neurology. 2008; 71 (12): 903–910.
  29. Head E., Lott I.T. Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol. 2004; 17 (2): 95–100.
  30. Irvine G.B., El-Agnaf O.M., Shankar G.M., Walsh D.M. Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol. Med. 2008; 14: 451–464.
  31. Luheshi L.V., Dobson C.M. Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett. 2009: 583: 2581–2586.
  32. Nakazato M., Matsukura S. New Type of Amyloidosis b) Islet Amyloid Polypeptide (IAPP/Amylin) in non-insulin dependent diabetes mellitus. Int. Med. 1993; 32 (12): 928–929.
  33. Watts J.C., Condello C., Stöhr J., Oehler A., Lee J., De Armond S.J., Lannfelt L., Ingelsson M., Giles K., Prusiner S.B. Serial propagation of distinct strains of A β prions from Alzheimer’s disease patients. Proc. Natl. Acad. Sci. USA. 2014; 111 (28): 10323–10328.
  34. Chernoff Y.O. Protein heredity and evolution. In: Charles Darwin and modern biology. E’.I. Kolchinskii, A.A. Fedotova (eds.). St. Petersburg: Nestor-Istoriia. 2010. P. 76–94.
  35. Kim J.I., Cali I., Surewicz K., Kong Q., Raymond G.J., Atarashi R., Race B., Qing L., Gambetti P., Caughey B., Surewicz W.K. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 2010;285: 14083–14087.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies