A NEW CLASS OF PHENOMENA IDENTIFIED DURING THE ANALYSIS OF NEURAL NETWORK OF MULTIDIMENSIONAL DATA FROM PATIENTS WITH INFLAMMATORY LUNG DISEASES

Cover Page

Abstract


Aim: to apply the neural network analysis method of multi-data of patients with community-acquired pneumonia (CAP) to recognize the variability of their diagnoses and discovery of new analytical capabilities of NSA based on new methodological approaches of the meeting. Materials and methods: in this paper, we applied a new approach of neural network analysis of multivariate data, obtained based on clinical, laboratory and instrumental tests in 60 patients older than 65 years at various stages of the treatment of community-acquired pneumonia. Anthropometric data were used together with the results of immunological and immunochemical studies of blood serum of patients with community-acquired pneumonia who were in the acute phase of the disease. Results: a new approach analysis of these data revealed the presence of characteristic groups of the bio-markers, which consist from a combination of a small number of the signs that are necessary and sufficient in the aggregate for accurate classification of diagnoses for patients. Conclusions: the presence of these symptoms characteristic series shows that we have discovered a new class of phenomena. These phenomena manifest themselves in the hidden relationships between the signs which included in these groups and are reflect features of the flow processes in the pathogenesis of inflammatory diseases of the lungs in different diagnostic areas. Their study can be an important and interesting in terms of understanding the many aspects of this disease.


A. A. Karabinenko

The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation

Author for correspondence.
Email: karabinenkoa@mail.ru

Russian Federation

доктор медицинских наук, профессор кафедры госпитальной терапии № 2 ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» МЗ РФ
Адрес: 117997, Москва, ул. Островитянова, д. 1, тел.: (495) 321-10-06

Y. M. Petrenko

The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation

Email: yury_petrenko@mail.ru

Russian Federation

доктор биологических наук, профессор кафедры общей и медицинской биофизики ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» МЗ РФ
Адрес: 117997, Москва, ул. Островитянова, д. 1, тел.: (495) 434-44-74

G. I. Storozhakov

The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation

Email: rgmugt@mail.ru

Russian Federation

доктор медицинских наук, профессор, академик РАМН, член Президиума РАМН, заведующий кафедрой госпитальной терапии № 2 ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» МЗ РФ
Адрес: 117997, Москва, ул. Островитянова, д. 1, тел.: (495) 321-55-44

N. M. Shirohova

The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation

Email: rgmugt@mail.ru

Russian Federation

кандидат медицинских наук, врач-терапевт кафедры госпитальной терапии № 2 Российского национального исследовательского медицинского университета им. Н.И. Пирогова, врач-терапевт ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» МЗ РФ
Адрес: 117997, Москва, ул. Островитянова, д. 1, тел.: (495) 321-55-44

  1. Albu A., Ungureanu L. Artificial Neural Network in Medicine. Telemed. J. E. Health 2012; 18 (6): 446–453.
  2. Luca M.D., Grossi E., Borroni B., Zimmermann M., Marcello E., Colciaghi F. et al. Artificial neural networks allow the use of simultaneous measurements of Alzheimer disease markers for early detection of the disease. Transl. Med. 2005; 27 (3): 30.
  3. Luca D.M., Pastorino L., Bianchetti A., Perez J., Vignolo L.A., Lenzi G.L. et al. Differential level of platelet amyloid beta precursor protein isoforms: an early marker for Alzheimer disease. Arch. Neurol. 1998; 55 (9): 1195–1200.
  4. Cleophas T.J., Cleophas T.F. Artificial intelligence for diagnostic purposes: principles, procedures and limitations. Clin. Chem. Lab. Med. 2010; 48 (2): 159–165.
  5. Твердохлеб В.М., Аранович М.В. Анализ признаков для распознавания очагов заболеваний на маммограммах. Сб. трудов XXI Междунар. науч. конф. «Математические методы в технике и технологиях». Саратов. 2008. С. 33–36.
  6. Безруков Н.С., Ермакова Е.В. Прогнозирование бронхиальной астмы по параметрам реоэнцефалографии на основе гибридной сети. Сб. трудов XIX Междунар. науч. конф. «Математические методы в технике и технологиях». Воронеж. 2006. С. 211–214.
  7. Филатова Н.Н., Спиридонов А.В. Нейросетевой алгоритм для построения иерархической классификации. Сб. трудов XXI Междунар. науч. конф. «Математические методы в технике и технологиях». Саратов. 2008. 65 с.
  8. Широхова Н.М. Внебольничная пневмония у лиц пожилого и старческого возраста: особенности диагностики и клинического течения. Автореф. … дис. канд. мед. наук. М. 2012. 27 с.

Views

Abstract - 30

PDF (Russian) - 9

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies