Cover Page


In this paper long known problems of microcirculation are shown, which were solved only during the last 40 years. They are concerned with the velocity and character of the capillary blood flow, the regulation of the capillary blood flow, the role of various vessels in the oxygen transport, the role of leukocytes in physiology and pathology of the capillary blood flow, with the special features of the function of lungs in supplying the whole organism with oxygen and with bioenergetic laws in the development of an organism adaptation to hypoxia. Here we considered a number of the most important medical problems of microcirculation and hypoxic syndrome. A relatively new factor in the capillary circulation is the fact that in the brain and heart capillaries there are sites with pO2 close to zero. They show that the capillary circulation has no central nervous regulation of the blood flow. The blood flow in these organs obeys only occasional oscillations. The new fact is that Krogh’s rule about metabolism and oxygen exchange occurring only in the capillaries is abandoned. It is shown that almost 30% of consumed oxygen is delivered to the brain via arterioles, which changes our relation to the capillary circulation as a unique mechanism of the tissue supply with oxygen. The new fact is also the mass adhesion of leukocytes to the walls of microvessels, which results in the occlusion of the vessels followed by the development of the heart and brain ischemia. It was shown for the first time that contrary to previous ideas the alveoli in the lungs are supplied with blood from a powerful network of large microvessels from 20 to 50 μm in diameter rather than from thin arterioles. They make possible the passage of 6–12 l of the blood in the norm and during stressed muscle activity — up to 18–23 l of blood per minute. The principle is substantiated that during hypoxia only normal supply of an organism with oxygen may result in a complete adaptation of an organism to the deficit of oxygen.

About the authors

K. P. Ivanov

I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation

Author for correspondence.

Russian Federation

доктор медицинских наук, профессор, заведующий лабораторией биоэнергетики и терморегуляции Института физиологии им. И.П. Павлова РАН, заслуженный деятель науки РФ
Адрес: 199034, Санкт-Петербург, наб. Макарова, д. 6, тел.: (812) 293-76-80


  1. Krogh A. Studies Anatomie und Physiologie der Capillaren. Berlin. 1924. 185 p.
  2. Krogh A. Studies Anatomie und Physiologie der Capillaren. Berlin. 1929. 350 p.
  3. Opitz E., Scheider M. Uber die sauerstoffversergung des Gehirn. Egebnisse Physiologie. 1950; 46: 126–260.
  4. Шошенко К.А. Кровеносные капилляры. Новосибирск: Наука. 1975. 375 с.
  5. Ma Y.P., Koo A., Kwan H.C. On-line measurement of the dynamic veloсity of erythrocytes in the cerebral microvessels in the rat. Мicrovasc. Res. 1974; 8: 1–13.
  6. Rosenblum W.I. Erythrocyte velocity and velocity pulse of the mouse brain. Circ. Res. 1969; 24: 518–523.
  7. Intaglietta M., Silverman N., Tompkins W.R. Capillary flow velocity measurement in vivo by television method. Microvasc. Res. 1975; 10: 165–179.
  8. Ivanov K.P., Kalinina M.K., Levkovitch Yu.I. Blood flow velocity in capillaries of brain and muscles and its physiologilal significance. Microvasc. Res. 1981; 22: 143–155.
  9. Ivanov K.P., Kalinina M.K., Levkovich Yu.I. Microcirculation velocity changes under hypoxia in brain, muscles, liver and their physiolodgical significanсe. Microvasc. Res. 1985; 30: 10–18.
  10. Иванов К.П. Основы энергетики организма. Т. 3. Современные проблемы и загадки энергетического баланса. СПб.: Наука. 2001. 275 с.
  11. Иванов К.П. Основы энергетики организма. Т. 4. Энергоресурсы организма и физиология выживания. СПб.: Наука. 2004. 255 с.
  12. Демченко И.Т., Чуйкин А.Е. Исследоваие капиллярного распределения РО2. Физиол. журн. СССР. 1975; 61: 1310–1316.
  13. Heinrich U., Hoffman J., Baumgartle A. Oxygen supply of the blood-free perfusion gunea pig brain. Adv. Exp. Med. Biol. 1985; 191: 4–9.
  14. Schuchardt S. Miocardial oxygen pressure. Adv. Exp. Med. Biol. 1985; 191: 21–35.
  15. Kessler M., Hoper J., Pohl U. Tissue oxygen supply. Proc. 5th Inter. Symposium om blood susbsitutes. Mainz. 1981. P. 99–107.
  16. Иванов К.П. Основы энергетики организма. Т. 2. Биологическое окисление. СПб.: Наука. 1993. 270 с.
  17. Harrison D.K., Birkenhake N., Nagen S. Regulation of capillary blood flow. Adv. Exp. Med. Biol. 1989; 248: 583–589.
  18. Hudentz A.C., Spaulding G., Kiani M. Computer simulation of cerebral microhemodynamics. Adv. Exp. Med. Biol. 1989; 248: 219–304.
  19. Duling B.R., Kushinsky W., Wohl M. Measurement of the pery-vascular PO2 in the vicinity of pial vessels. Pflug. Arch. 1979; 383: 669–678.
  20. Иванов П.К., Дерий А.Н., Самойлов М.О. Диффузия кислорода из артериол. ДАН СССР. 1979; 244: 1509–1513.
  21. Ivanov K.P., Derry A.N., Vovenko E.P. Direct measurement of P02of arterioles, kapillaries and venules. Pflug. Arch. 1982; 393: 118–120.
  22. Иванов К.П., Кисляков Ю.Я. Энергетические потребности головного мозга. Ленинград: Наука. 1979. 212 с.
  23. Lipton P. Ischemic cell death in bran neuron. Physiol. Rev. 1999; 79: 1431–1568.
  24. Кулик А.М., Бартызель А.И., Арефьев П.С. Метод прижизненного изучения микрососудов легких в эксперименте. Бюлл. эксп. биол. и медицины. 1982; ХСIII (3): 19.
  25. Tabuchi A., Mertens M., Pries A. Intravital microscopy of the murine pulmonary microcirculation. J. Appl. Physiol. 2008; 104: 338–346.
  26. Miller W.S. The lung. Spingfield-Baltimore: Thomas. 1947. 210 p.
  27. Фуллер А.Ф., Шенке М. Учебник физиологии. М. 2008. 450 с.
  28. Шеид П. Физиология дыхания. Фундаментальная физиология. Под ред. А.Н. Комкова. М.: Академия. 2004. С. 773–838.
  29. Синельников А.Д. Атлас анатомии человека. М.: Медицина. 1979. 470 с.
  30. Иванов К.П., Потехина И.Л., Алюхин Ю.С., Мельникова Н.Н. Микроциркуляция в легких. Регионарное кровообращение и микроциркуляция. 2010; 9 (3): 81–85.
  31. Иванов К.П., Мельникова Н.Н. Морфологический анализ системы микроциркуляции в легких. Морфология. 2011; 139 (3): 63–67.
  32. Иванов К.П. Новые данные о кровообращении в легких и оксигенации гемоглобина. Бюлл. эксп. биол. и мед. 2012; 154 (10): 402–405.
  33. Иванов К.П. Функция альвеол как результат эволюционо-го развития дыхательной системы. Журн. эволюц. биохим. и физиол. 2013; 49 (1): 55–59.
  34. Ivanov K.P. Microcirculation in the lungs: special features of cons tractio and dynamics. Adv. Exp. Med. Biol. 2013; 756: 197–201.
  35. Ivanov K.P. Circulation in the lungs a. the microcirculation in the alveoli. Respir. Physiol. Neurobiol. 2013; 187: 26–30.
  36. Schmidt-Nielsen K. Why is animal size so important? Cambridge: Cambridge University Press. 1984.
  37. Иванов К.П., Калинина М.К., Левкович Ю.И. Скорость микроциркуляции в мозге при уменьшении концентрации гемоглобина в крови (гемодилюция). ДАН СССР. 1983; 273: 251–253.
  38. Шляхто Е.В., Баранцевич Е.Р., Щербак Н.С., Галагуда М.М. Молекулярные механизмы формирования ишемической толерантности головного мозга. Вестник РАМН. 2012; 7: 20–30.
  39. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина. 2001. 325 с.



Abstract - 408

PDF (Russian) - 749


Article Metrics

Metrics Loading ...



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies