Cover Page

Cite item


In this paper presented current state about hormonal changes in sympathetic-adrenal, hypophysis-adrenal, hypophysis-gonads and thyroid levels from extreme environment factors. It’s shown that hypophysis gonads and thyroid endocrine links along with sympathetic adrenal, hypophysis adrenal axes are very important relevance in response to extreme environment factors and organism adaptation. In this time a hormonal secretion changes corresponds as interrelated reactions cascade in mechanisms of homeostasis maintenance. A studying of this mechanisms and revealing of its role in stress pathogenesis is fundamental biomedical investigation task. A problem solving allow to perfect prophylactic and treatment methods against stress diseases.


About the authors

R. V. Kubasov

Northern State Medical University, Arkhangelsk

Author for correspondence.
Email: romanas2001@gmail.com
кандидат биологических наук, старший преподаватель кафедры мобилизационной под- готовки здравоохранения и медицины катастроф СГМУ Адрес: 163061, Архангельск, Троицкий пр-т, д. 51, тел.: +7 (8182) 24-22-65 Russian Federation


  1. Меерсон Ф.З. О «цене» адаптации. Патол. физиология и экспериментальная терапия. 1986; 3: 9–19.
  2. Charmandari E., Tsigos C., Chrousos G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005; 67: 259–284.
  3. Горизонтов П.Д. Гомеостаз. М.: Медицина. 1981. 576 с.
  4. Daniels D., Fluharty S.J. Neuroendocrinology of Body Fluid Homeostasis. Hormones, Brain and Behavior. Second Edition. D.W. Pfaff, A.P. Arnold, S.E. Fahrbach (eds.). USA: Academic Press. 2009. P. 259–289.
  5. Старкова Н.Т. Клиническая эндокринология: Руководство. СПб.: Питер. 2002. 576 с.
  6. Larzelere M.M., Jones G.N. Stress and health. Primary Care: Clinics in Office Practice. 2008; 35 (4): 839–856.
  7. ГаркавиЛ.Х., Квакина Е.Б., Уколова М.А. Адаптационные реакциии резистентность организма. Изд. 3-е, доп. Ростов-на-Дону:Изд-во Ростовского ун-та. 1990. 223 с.
  8. Selye H. Stress without distress. Philadelphia, USA: Lippincott. 1974. 171 p.
  9. Горобец Л.Н. Нейроэндокринные дисфункции и нейролептическая терапия. М.: Медпрактика-М. 2007.312 с.
  10. Cameron J.L. Stress and Reproduction. Encyclopedia of Hormones. H.L. Henry, A.W. Norman (eds.). USA: Academic Press. 2003. P. 433–438.
  11. Хныченко Л.К., Сапронов Н.С. Стресс и его роль в развитии патологических процессов. Обзоры по клинической фармакологии и терапии. 2003; 3: 2–15.
  12. Eiden L.E. Neuropeptide-Catecholamine Interactions in Stress. A New Era of Catecholamines in the Laboratory and Clinic. USA, Elsevier Inc. 2013; 68: 399–404.
  13. Kino T., Charmandari E., Chrousos G.P. Disorders of the Hypothalamic-Pituitary-Adrenocortical System. Handbook of Neuroendocrinology. G. Fink, D.W. Pfaff, J. Levine (eds.). USA, NY: Academic Press. 2012. P. 639–657.
  14. McCarty R., Pacak K. Alarm Phase and General Adaptation Syndrome. Encyclopedia of Stress. Second Edition. G. Fink (ed.). USA: Academic Press. 2007. P. 119–123.
  15. Summers C.H. Mechanisms for quick and variable responses. Brain Behav. Evol. 2001; 57 (5): 283–292.
  16. Armario A., Martí O., Vallès A., Dal-Zotto S., Ons S. Long-term effects of a single exposure to immobilization on the hypothalamic-pituitary-adrenal axis: neurobiologic mechanisms. Ann. N.Y. Acad. Sci. 2004; 1018: 162–172.
  17. Arendt D.H., Smith J.P., Bastida C.C., Prasad M.S., Oliver K.D., Eyster K.M., Summers T.R., Delville Y. and Summers C.H. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol. Behav. 2012; 107 (5): 670–679.
  18. Aguilera G., Kiss A., Liu Y., Kamitakahara A. Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress. 2007; 10 (2): 153–161.
  19. Ronan P.J., Summers C.H. Molecular signaling and translational significance of the corticotropin releasing factor system. Prog. Mol. Biol. Transl. Sci. 2011; 98: 235–292.
  20. Pearson-Murphy B.E. Glucocorticoids, Overview. Encyclopedia of Stress (Second Edition). G. Fink (ed.). USA: Academic Press. 2007. P. 198–210.
  21. Jiang X., Wang J., Luo T., Li Q. Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrinology. 2009; 34 (3): 317–331.
  22. Melmed S., Polonsky K.S., Reed Larsen P., Kronenberg H.M. Williams Textbook of Endocrinology. USA: Elsivier Saunders. 2011. 1816 p.
  23. Амстиславская Т.Г., Попова Н.К. Нейроэндокринные механизмы регуляции полового мотивационного поведения самцов: эффекты неблагоприятных воздействий в разные периоды онтогенеза. Обзоры по клинической фармакологии и лекарственной терапии. 2009; 2: 3–21.
  24. Gray M., Bingham B., Viau V. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinology. 2010; 22 (2): 92–101.
  25. Ахмадеев А.В., Калимуллина Л.Б. Половые стероиды и моноамины в системе нейроэндокринной регуляции миндалевидного комплекса мозга. Российский физиологический журнал им. И.М. Сеченова. 2011; 97 (5): 483–491.
  26. Retana-Marquez S., Bonilla-Jaime H., Vazquez-Palacios G., Martínez-García G.R. and Velázquez-Moctezuma J. Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm. Behav. 2003; 44 (4): 327–337.
  27. McCann S.M., Karanth S., Mastronardi C.A., Les Dees W., Childs G., Miller B., Sower S., Yu W.H. Control of Gonadotropin Secretion by Follicle-Stimulating Hormone-Releasing Factor, Luteinizing Hormone-Releasing Hormone, and Leptin. Arch. Med. Res. 2001; 32 (6): 476–485.
  28. Ariza Traslaviña G.A., Franci C.R. The CRH-R1 receptor mediates luteinizing hormone, prolactin, corticosterone and progesterone secretion induced by restraint stress in estrogen-primed rats. Brain Res. 2011; 1421 (3): 11–19.
  29. Brizio-Molteni L., Molteni A., Warpeha R.L., Angelats J., Lewis N., Fors E.M. Prolactin, corticotropin, and gonadotropin concentrations following thermal injury in adults. J. Trauma. 1984; 24 (1): 1–7.
  30. Mahesh V.B., Brann D.W. Neuroendocrine mechanisms underlying the control of gonadotropin secretion by steroids. Steroids. 1998; 63 (5–6): 252–256.
  31. Ben-Jonathan N. Prolactin (PRL). Encyclopedia of Hormones. H.L. Henry, A.W. Norman (eds.). USA: Academic Press. 2003. P. 263–269.
  32. Tolis G., Rombopoulos G., Kaltsas D., Katounda E., Kaltzidou V., Angelopoulos N. Prolactin and Stress. Encyclopedia of Stress. Second Edition. G. Fink (ed). USA: Academic Press. 2007. P. 231–233.
  33. Onaka T., Takayanagi Y., Leng G. Metabolic and stress-related roles of prolactin-releasing peptide. Trends Endocrinol. & Metabolism. 2010; 21 (5): 287–293.
  34. Eijsbouts A., van den Hoogen F., Laan R., Sweep C.G., Her-mus A.R., van de Putte L.B. Decreased prolactin response to hypoglycaemia in patients with rheumatoid arthritis: correlation with disease activity. Rheum. Dis. 2005; 64 (3): 433– 437.
  35. Jiménez-Ortega V., Cardinali D.P., Cano P., Fernandez-Mateos P., Reyes-Toso C., Esquifino A. Effect of Ethanol on 24-h Hormonal Changes in Prolactin Release Mechanisms in Growing Male Rats. Endocrine. 2006; 30 (3): 269–278.
  36. Ramalho M.J., Reis L.C., Antunes-Rodrigues J., Nonaka K.O., De C. Reduced prolactin release during immobilization stress in thyrotoxic rats: role of the central serotoninergic system. Horm. Metab. Res. 1995; 27 (3): 121–125.
  37. Isobe K., Yukimasa N., Nakai T., Takuwa Y. Pituitary adenylate cyclase-activating polypeptide induces gene expression of the catecholamine synthesizing enzymes, tyrosine hydroxylase and dopamine β hydroxylase, through 3′, 5′-cyclic adenosine monophosphate- and protein kinase C-dependent mechanisms in cultured porcine adrenal medullary chromaffin cells. Neuropeptides. 1996; 30 (2): 167–175.
  38. Ohiwa N., Chang H., Saito T., Onaka T, Fujikawa T., Soya H. Possible inhibitory role of prolactin-releasing peptide for ACTH release associated with running stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007; 292: 497–504.
  39. Chang L.L., Lo M.Y., Kan S.F., Huang W.Y. Direct effects of prolactin on corticosterone release by zona fasciculata reticularis cells from male rats. J. Cell. Biochem. 1999; 74 (4): 563–572.
  40. Yu-Lee L. Prolactin modulation of immune and inflammatory responses. Recent Prog. Horm Res. 2002; 57: 435–455.
  41. Немирович-Данченко Е.А., Фомичева Е.Е. Влияние пролактина на изменение концентрации кортикостерона в крови и интенсивность иммунологических реакций у крыс при стрессе. Медицинская иммунология. 2002; 4–5: 613–618.
  42. Redelman D., Welniak L.A., Taub D., Murphy W.J. Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell. Immunol. 2008; 252 (1–2): 111–121.
  43. Kalliomäki M., Pertovara A., Brandt A., Wei H., Pietila P., Kalmari J., Xu M., Kalso E., Panula P. Prolactin-releasing peptide affects pain, allodynia and autonomic reflexes through medullary mechanisms. Neuropharmacology. 2004; 46 (3): 412–424.
  44. Wildburger R., Zarkovic N., Tonkovic G., Skoric T., Frech S., Hartleb M., Loncaric I., Zarkovic K. Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J. Endocrinol. Invest. 1998; 21 (2): 78–86.
  45. Vigas M., Celko J., Koska J. Role of body temperature in exercise-induced growth hormone and prolactin release in non-trained and physically fit subjects. Endocr. Regul. 2000; 34 (4): 175–180.
  46. Бабичев В.Н. Нейроэндокринный эффект половых гормонов. Успехи физиологических наук. 2005; 36 (1): 54–67.
  47. Bardin C.W. The anabolic action of testosterone. N. Engl. J. Med. 1996; 335 (1): 52–53.
  48. Гончаров Н.П., Кация Г.В., Нижник А.И. Дегидроэпиандро-стерон и функции мозга. Вестник РАМН. 2006; 6: 45–50.
  49. Viau V., Meaney M.J. Alpha1 adrenoreceptors mediate the stimulatory effects of oestrogen on stress-related hypothalamic-pituitary-adrenal activity in the female rat. J. Neuroendocrinol. 2004; 16 (1): 72–78.
  50. Almeida S.A., Kempinas W.G., Lamano Carvalho T.L. Sexual behavior and fertility of male rats submitted to prolonged immobilization-induced stress. Braz. J. Med. Biol. Res. 2000; 33 (3): 1105–1109.
  51. Sankar B.R., Maran R.R., Sivakumar R., Govindarajulu P., Balasubramanian K. Chronic administration of corticosterone impairs LH signal transduction and steroidogenesis in rat Leydig cells. J. Steroid Biochem. 2000; 72 (3–4): 155–162.
  52. López-Calderón A., Ariznavarreta C., González-Quijano M.I. Stress induced changes in testis function. J. Steroid. Biochem. Mol. Biol. 1991; 40 (1–3): 473–479.
  53. Akinbami M.A., Philip G.H., Sridaran R., Mahesh V.B., Mann D.R. Expression of mRNA and proteins for testicular steroidogenic enzymes and brain and pituitary mRNA for glutamate receptors in rats exposed to immobilization stress. J. Steroid Biochem. Mol. Biol. 1999; 70 (4–6): 143–149.
  54. Bedrak E., Chap Z. Activity of LH receptor, LH-stimulated cyclic AMP and testosterone production in the Leydig cell of heat-acclimatized rats. J. Endocrinol. 1984; 102 (2): 167–173.
  55. Selvage D.J., Lee S.Y., Parsons L.H., Seo D.O., Rivier C.L. A hypothalamic-testicular neural pathway is influenced by brain catecholamines, but not testicular blood flow. Endocrinology. 2004; 145 (4): 1750–1759.
  56. Sasagawa I., Yazawa H., Suzuki Y., Nakada T. Stress and testicular germ cell apoptosis. Arch Androl. 2001; 47 (3): 211–216.
  57. Miura M., Sasagawa I., Suzuki Y., Nakada T., Fujii J. Apoptosis and expression of apoptosis-related genes in the mouse testis following heat exposure. Fertil. Steril. 2002; 77 (4): 787–793.
  58. Turner A.I., Canny B.J., Hobbs R.J., Bond J.D., Clarke I.J., Tilbrook A. Influence of sex and gonadal status of sheep on cortisol secretion in response to ACTH and on cortisol and LH secretion in response to stress: importance of different stressors. J. Endocrinol. 2002; 173 (1): 113–122.
  59. Daly W., Seegers C.A., Rubin D.A., Dobridge J.D. and Hackney A.C. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur. J. Appl. Physiol. 2005; 93 (4): 375–380.
  60. Orr T.E., Mann D.R. Effects of restraint stress on plasma LH and testosterone concentrations, Leydig cell LH/hCG receptors, and in vitro testicular steroidogenesis in adult rats. Horm. Behav. 1990; 24 (3): 324–341.
  61. Labombarda F., Moumen Ghoumari A., Liere P., de Nicola A.F., Ghoumari A.M., Guennoun R. Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABAA receptors. Neuropharmacol. 2013; 71: 46–55.
  62. Schumacher M., Weill-Engerer S., Liere P., Robert F., Franklin R., Garcia-Segura L.M., Lambert J.J., Mayo W., Melcangi R.C., Parducz A., Suter U., Carelli C., Baulieu E.E., Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Progress in Neurobiology. 2003; 71 (1): 3–29.
  63. Deutsch E.R., Espinoza T.R., Atif F., Woodall E., Kaylor J., Wrigh D.W. Progesterone’s role in neuroprotection, a review of the evidence. Brain Res. 2013; 1530 (12): 82–105.
  64. Pedersen S.B., Kristensen K., Richelsen B. Anti-glucocorticoid effects of progesterone in vivo on rat adipose tissue metabolism. Steroids. 2003; 68 (6): 543–550.
  65. El-Hefnawy T., Huhtaniemi I. Progesterone can participate in down-regulation of the luteinizing hormone receptor gene expression and function in cultured murine Leydig cells. Mol. Cell. Endocrinol. 1998; 137 (2): 127–138.
  66. Jeyaraj D.A., Mani Maran R.R., Aruldhas M.M., Govindarajulu P. Progesterone induced modulations of serum hormonal profiles in adult male and female rats. Endocr. Res. 2001; 27 (1–2): 223–232.
  67. Manna P.R., Jo Y., Stocco D.M. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling J. Endocrinol. 2007; 193: 53–63.
  68. Kalil B., Leite C.M., Carvalho-Lima M., Anselmo-Franci J.A. Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: sex differences. Int. J. Biol. Stress. 2013; 16 (4): 452–460.
  69. Sá S.I., Pereira P.A., Malikov V., Madeira M.D. Role of estrogen receptor α and β in the induction of progesterone receptors in hypothalamic ventromedial neurons. Neuroscience. 2013; 238 (15): 159–167.
  70. Sánchez-Criado J.E., De Las Mulas J.M., Bellido C., Tena-Sempere M., Aguilar R., Blanco A. Biological role of pituitary estrogen receptors ERalpha and ERbeta on progesterone receptor expression and action and on gonadotropin and prolactin secretion in the rat. Neuroendocrinology. 2004; 79 (5): 247–258.
  71. Федотова Ю.О., Сапронов Н.С. Эффекты эстрогенов в центральной нервной системе. Успехи физиологических наук. 2007; 38 (2): 46–62.
  72. Lee J.K., Imperato-McGinley J. Estrogen and the Male. Encyclopedia of Endocrine Diseases. L. Martini (ed.). USA: Elsevier Inc. 2004. P. 29–34.
  73. Khan M.M., Dhandapani K.M., Zhang Q.G., Brann D.W. Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex. Steroids. 2013; 78 (6): 614–623.
  74. Mann V., Huber C., Kogianni G., Collins F., Noble B. The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone. 2007; 40 (3): 674–684.
  75. Карева Е.Н., Олейникова О.М., Панов В.О., Шимановский Н.Л., Скворцова В.И. Эстрогены и головной мозг. Вест-ник РАМН. 2012; 2: 48–52.
  76. Baker L.D., Asthana S., Cholerton B.A., Wilkinson C.W., Ply-mate S.R., Green P.S., Merriam G.R., Fishel M.A., Watson G.S., Cherrier M.M., Kletke M.L., Mehta P.D. and Craft S. Cognitive response to estradiol in postmenopausal women is modified by high cortisol. Neurobiol. Aging. 2012; 33 (4): 9–20.
  77. Kerdelhué B., Andrews M.C., Zhao Y., Scholler R., Jones H.W. Short term changes in melatonin and cortisol serum levels after a single administration of estrogen to menopausal women. Neuroendocrinol. Lett. 2006; 27 (5): 659–664.
  78. Pierce B.N., Clarke I.J., Turner A.I., Rivalland E.T., Tilbrook A.J. Cortisol disrupt the ability of estradiol-17β to induce the LH surge in ovariectomized ewes. Domestic An. Endocrinol. 2009; 36 (4): 202–208.
  79. Семененя И.Н. Функциональное значение щитовидной железы. Успехи физиологических наук. 2004; 35 (2): 41–56.
  80. Babych N.O., Antoniak H.L., Tymochko M.F., Snitynsky V.V. The effect of thyroxine on the enzymatic activity of the energy metabolism and antioxidant system in the neutrophilic granulocytes of piglets. Fizioliologicheskii Zhurnal. 2000; 46 (3): 84–91.
  81. Saicić Z.S., Mijalković D.N., Nikolić A.L. Effect of thyroxine on antioxidant defense system in the liver of different aged rats. Physiol. Res. 2006; 55 (5): 561–568.
  82. Knopp J., Brtko J. Effect of 3, 5, 3′-triiodothyronine on cytosolic cAMP-dependent, cAMP-independent protein kinase and nuclear DNA-associated kinase activity in proliferating rat liver under different nutritional regimens. J. Nutr. Biochem. 1995; 6 (3): 145–150.
  83. Daza F.J., Parrilla R., Martín-Requero A. Influence of thyroid status on hepatic alpha 1-adrenoreceptor responsiveness. Am. J. Physiol. 1997; 6 (1): 1065–1072.
  84. Murao K., Imachi H., Cao W.M., Tokumitsu H., Inuzuka H., Wong N.C., Shupnik M.A., Kobayashi R., Ishida T. Role of calcium-calmodulin-dependent protein kinase cascade in thyrotropin (TSH)-releasing hormone induction of TSH and prolactin gene expression. Endocrinology. 2004; 145 (11): 4846–4852.
  85. McLay R., Pan W., Kastin A.J. Effects of peptides on animal and human behavior: a review of studies published in the first twenty years of the journal Peptides. Peptides. 2001; 22 (12): 2181– 2255.
  86. Кубасов Р.В., Кубасова Е.Д. Математическое моделирование возрастных изменений межгормональных взаимоотношений гипофизарно-тиреоидной и гипофизарно-гонадной оси. Экология человека. 2007; 4: 45–50.
  87. Zhao Y., Hou W.G., Zhu H.P., Zhao J., Wang R.A., Xu R.J., Zhang Y.Q. Expression of thyrotropin-releasing hormone receptors in rat testis and their role in isolated Leydig cells. Cell. Tis. Res. 2008; 334 (2): 283–294.
  88. Chiao Y.C., Lee H.Y., Wang S.W., Hwang J.J., Chien C.H., Huang S.W., Lu C.C., Chen J.J., Tsai S.C., Wang P.S. Regulation of thyroid hormones on the production of testosterone in rats. J. Cell. Biochem. 1999; 73 (4): 554–562.
  89. Miyashita K., Murakami M., Iriuchijima T., Takeuchi T., Mori M. Regulation of rat liver type 1 iodothyronine deiodinase mRNA levels by testosterone. Mol. Cell. Endocrinol. 1995; 115 (2): 161–167.
  90. Бабичев В.Н., Самсонов В.И. Активность системы гипоталамус-гипофизщитовидная железа при изменении функционального состояния половых желез. Проблемы эндокринологии. 1977; 23 (2): 66–69.
  91. Joffe R.T., Sokolov S.T. Thyroid hormones, the brain, and affective disorders. J. Crit. Rev. Neurobiol. 1994; 8 (2): 45–63.
  92. Горобец Л.Н. Нейроэндокринные дисфункции и нейролептическая терапия. М.: Медпрактика-М. 2007. 312 с.
  93. Tafet G.E., Bernadini R. Psychoneuroendocrinological links between chronic stress and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003; 27 (6): 893–903.

Copyright (c) 1970 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies