MOLECULAR MECHANISMS OF DEVELOPMENT OF CEREBRAL TOLERANCE TO ISCHEMIA. PART 1

Cover Page

Abstract


In the first part of this review molecular mechanisms of ischemic tolerance emerging as a result of preconditioning of the brain are discussed. Data on inductors, sensors, transducers and effectors of early and delayed ischemic tolerance are presented.


About the authors

E. V. Shlyakhto

Saint- Petersburg State Medical Pavlov’s University, Saint-Petersburg
Saint-Petersburg, Almazov Federal Heart, Blood and Endocrinology Centre

Author for correspondence.
Email: shlyakhto@almazovcentre.ru

Russian Federation доктор медицинских наук, профессор, академик РАМН, директор ФГБУ «Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова» Минздравсоцразвития России, заведующий кафедрой факультетской терапии СПбГМУ им. акад. И.П. Павлова Адрес: 197341, Санкт-Петербург, ул. Аккуратова, д. 2 Тел.: (812) 702-37-00

E. P. Barantsevich

Saint- Petersburg State Medical Pavlov’s University, Saint-Petersburg
Saint-Petersburg, Almazov Federal Heart, Blood and Endocrinology Centre

Email: profossrerb@yandex.ru

Russian Federation доктор медицинских наук, профессор, заведующий кафедрой неврологии и мануальной медицины ФПО СПбГМУ им. акад. И.П. Павлова, заведующий НИО ангионеврологии ФГБУ «Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова» Минздравсоцразвития России Адрес: 197022, Санкт-Петербург, ул. Л. Толстого, д. 6/8 Тел/факс: 8 (812) 233-45-26

N. S. Shcherbak

Saint- Petersburg State Medical Pavlov’s University, Saint-Petersburg
Saint-Petersburg, Almazov Federal Heart, Blood and Endocrinology Centre

Email: shcherbakns@yandex.ru

Russian Federation кандидат биологических наук, старший научный сотрудник лаборатории неотложной кардиологии Института сердечно-сосудистых заболеваний СПбГМУ им. акад. И.П. Павлова, ведущий научный сотрудник лаборатории нанотехнологий ФГБУ «Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова» Минздравсоцразвития России Адрес: 197341, Санкт-Петербург, ул. Аккуратова, д. 2 Тел.: (812) 702-37-00

M. M. Galagudza

Saint- Petersburg State Medical Pavlov’s University, Saint-Petersburg
Saint-Petersburg, Almazov Federal Heart, Blood and Endocrinology Centre

Email: galagoudza@mail.ru

Russian Federation доктор медицинских наук, руководитель Института экспериментальной медицины ФГБУ «Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова» Минздравсоцразвития России, профессор кафедры патофизиологии СПбГМУ им. акад. И.П. Павлова Адрес: 197022, Санкт-Петербург, ул. Л. Толстого, д. 6/8

References

  1. Shmonin A.A., Bajsa A.E., Mel’nikova E.V., i dr. Zaschitnye `effekty rannego ishemicheskogo prekondicionirovaniya pri fokal’noj ishemii mozga u krys: rol’ kollateral’nogo krovoobrascheniya. Rossijskij fiziologicheskij zhurnal. 2011; 97 (2): 203-214.
  2. Atochin D.N., Clark J., Demchenko I.T. et al. Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke. 2003; 34 (5): 1299–1303.
  3. Barone F.C., White R.F., Spera P.A. et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998; 29 (9): 1937–1950.
  4. Bernaudin M., Marti H.H., Roussel S. et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 1999; 19 (6): 643–651.
  5. Bernaudin M., Tang Y., Reilly M. et al. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J. Biol. Chem. 2002; 277: 39728–39738.
  6. Bolaсos J.P., Moro M.A., Lizasoain I., Almeida A. Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv. Drug Deliv. Rev. 2009; 61: 1299–1315.
  7. Brucklacher R.M., Vannucci R.C. Vannucci S.J. Hypoxic preconditioning increases brain glycogen and delays energy depletion from hypoxia-ischemia in the immature rat. Dev. Neurosci. 2002; 24: 411–417.
  8. Chavez J.C., Hurko O., Barone F.C., Feuerstein G.Z. Pharmacologic interventions for stroke: looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke. 2009; 40 (10): 558–563.
  9. Correia S.C., Carvalho C., Cardoso S., et al., Mitochondrial preconditioning: a potential neuroprotective strategy. Front. Aging Neurosci. 2010; 2: 138.
  10. Dahl N.A., Balfour W.M. Prolonged anoxic survival due to anoxia pre-exposure: brain atp, actate, and pyruvate. Am. J. Physiol. 1964; 207: 452–456.
  11. Dawson V.L. Dawson T.M. Neuronal ischemic preconditioning. Trends Pharmacol. Sci. 2000; 21: 423–424.
  12. Dhodda V.K., Sailor K.A., Bowen K.K. et al. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J. Neurochem.2004; 89: 73–89.
  13. Ding Y.H., Young C.N., Luan X. et al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol. 2005; 109 (3): 237–246.
  14. Dirnagl U., Simon R.P., Hallenbeck J.M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003; 26: 248–254.
  15. Dirnagl U., Becker K., Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009; 8: 398–412.
  16. Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet. 2008; 371: 1612–1623.
  17. Douen A.G., Akiyama K, Hogan M.J. et al. Preconditioning with cortical spreading depression depression decreases intraischemic cerebral glutamate levels and downregulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebral cortex plasma membranes. J. Neurochem. 2000; 75: 812–818.
  18. Endres M., Gertz K., Lindauer U. et al. Mechanisms of stroke protection by physical activity. Ann. Neurol. 2003; 54 (5): 582–590.
  19. Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: volutionary and ecological physiology. Ann. Rev. Physiol. 1999; 61: 243–282.
  20. Furuya K., Zhu L., Kawahara N. et al. Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. J. Neurosurg. 2005; 103: 715–723.
  21. Gidday J.M. Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 2006; 7: 437–448.
  22. Ginsberg M.D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008; 55 (3): 363–389.
  23. Gonzalez-Zulueta M., Feldman A.B., Klesse L.J. et al. Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA. 2000; 97 (1):436–441.
  24. Green A.R. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br. J. Pharmacol. 2008; 153: 325–338.
  25. Hashiguchi A., Yano S., Morioka M. et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 2004; 24 (3): 271–279.
  26. Hayashi T., Saito A., Okuno S. et al. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J. Cereb. Blood Flow Metab. 2003; 23: 949–961.
  27. Heurteaux C., Lauritzen I., Widmann C., Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA. 1995; 92: 4666–4670.
  28. Hiraide T., Katsura K., Muramatsu H. et al. Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil. Brain Res. 2001; 910: 94–98.
  29. Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of KA-AMPAgated glutamate receptor channels depends on subunit composition. Science. 1991; 252 (5007): 851–853.
  30. http://www.strokecenter.org/patients/stats.htm
  31. Janoff A. Alterations in lysosomes (intracellular enzymes) during shock: effects of preconditioning (tolerance) and protective drugs. Int. Anesthesiol. Clin. 1964; 2: 251–269.
  32. Jenkins L.W., Moszynski K. Lyeth B.G. et al. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 1989; 477: 211–224.
  33. Jones N.M., Bergeron M Hypoxic preconditioning induces changes in hif-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab. 2001; 21: 1105–1114.
  34. Jones N.M. Bergeron M. Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J. Neurochem. 2004; 89: 157–167.
  35. Kapinya K.J. Ischemic tolerance in the brain. Acta Physiol. Hung. 2005; 92: 67–92.
  36. Kapinya K.J., Lowl D., Futterer C. et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002; 33 (7): 1889–1898.
  37. Kawahara N., Ruetzler C.A., Klatzo I. Protective effect of spreading depression against neuronal damage following cardiac arrest cerebral ischemia. Neurol. Res. 1995; 17: 9–16.
  38. Kawahara N., Ide T., Saito N., et al. Propentofylline potentiates induced ischemic tolerance in gerbil hippocampal neurons via adenosine receptor. J. Cereb. Blood Flow Metab. 1998; 18: 472–475.
  39. Kawahara K., Yanoma J., Tanaka M. et al. Nitric oxide produced during ischemia is toxic but crucial to preconditioning-induced ischemic tolerance of neurons in culture. Neurochem. Res. 2004; 29: 797–804.
  40. Kirino T. Ischemic tolerance. J. Cereb. Blood Flow Metab. 2002; 22 (11): 1283–1296.
  41. Kitagawa K., Matsumoto M., Tagaya M. et al. ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 1990; 528 (1): 21–24.
  42. Kitagawa K., Matsumoto M., Tagaya M. et al. Hyperthermiainduced neuronal protection against ischemic injury in gerbils. J. Cereb. Blood Flow Metab. 1991; 11 (3): 449–452.
  43. Kitagawa K., Matsumoto M., Ohtsuki T. et al. Extended neuronal protection induced after sublethal ischemia adjacent to the area with delayed neuronal death. Neuroscience. 2000; 96: 141–146.
  44. Kume M., Yamamoto Y., Saad S. et al. Ischemic preconditioning of the liver in rats: implications of heat shock protein induction to increase tolerance of ischemia-reperfusion injury. J. Lab. Clin. Med. 1996; 128: 251–258.
  45. Li W., Luo Y., Zhang F. et al. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J. Cereb. Blood Flow Metab. 2006; 26 (2): 181–198.
  46. Lipton P. Ischemic cell death in brain neurons. Physiol. Rev. 1999; 79: 1431–1568.
  47. Liu C., Chen S., Kamme F. Hu B.R. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience. 2005; 134: 69–80.
  48. Lo E.H., Dalkara T., Moskowitz M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 2003; 4: 399–415.
  49. Loor G., Schumacker P.T. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 2008; 15 (4): 686–690.
  50. Iyer N.V., Kotch L.E., Agani F. et al. Cellular and developmental control of O2 of hypoxia-inducible factor 1. Genes & Dev. 1998; 12: 149–162.
  51. Moncayo J., de Freitas G.R., Bogousslavsky J. et al. Do transient ischemic attacks have a neuroprotective effect? Neurology. 2000; 54:2089–2094.
  52. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1124–1136.
  53. Obrenovitch T.P. Molecular physiology of preconditioninginduced brain tolerance to ischemia. Physiol. Rev. 2008; 88 (1): 211–247.
  54. Ohtsuki T., Matsumoto M., Kuwabara K. et al. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 1992; 599: 246–252.
  55. Ohtsuki T., Matsumoto M., Kitagawa K. et al. Induced resistance and susceptibility to cerebral ischemia in gerbil hippocampal neurons by prolonged but mild hypoperfusion. Brain Res. 1993; 614: 279–284.
  56. Paschen W. Mies G. Effect of induced tolerance on biochemical disturbances in hippocampal slices from the gerbil during and after oxygen/glucose deprivation. Neuroreport. 1999; 10: 1417–1421.
  57. Pasupathy S., Homer-Vanniasinkam S. Surgical implications of ischemic preconditioning. Arch. Surg. 2005; 140: 405–409.
  58. Perez-Pinzon M.A., Xu G.P., Dietrich W.D. et al. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J. Cereb. Blood Flow Metab. 1997; 17 (2): 175–182.
  59. Perez-Pinzon M.A. Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J. Bioenerg. Biomembr.2004; 36: 323–327.
  60. Plamondon H., Blondeau N., Heurteaux C., Lazdunski M. Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and KATP channels. J. Cereb. Blood Flow Metab. 1999; 19: 1296–1308.
  61. Puisieux F., Deplanque D., Bulckaen H. et al. Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase. Brain Res. 2004; 1027 (1–2): 30–37.
  62. Rami A., Bechmann I., Stehle J.H. Exploiting endogenous antiapoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog. Neurobiol. 2008; 85: 273–296.
  63. Raval A.P., Dave K.R., Mochly-Rosen D. et al. PKC is required for the induction of tolerance by ischemic and NMDAmediated preconditioning in the organotypic hippocampal slice. J. Neurosci. 2003; 23: 384–391.
  64. Sandercock P., Berge E., Dennis M. et al. A systematic review of the effectiveness, cost-effectiveness and barriers to implementation of thrombolytic and neuroprotective therapy for acute ischaemic stroke in the NHS. Health Technol. Assess. 2002; 6 (26): 1–112.
  65. Semenza G.L., Jiang B.H., Leung S.W. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxiainducible factor 1. J. Biol. Chem. 1996; 271: 32529–32537.
  66. Stagliano N.E., Perez-Pinzon M.A., Moskowitz M.A., Huang P.L. Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J. Cereb. Blood Flow Metab. 1999; 19 (7): 757–761.
  67. Stenzel-Poore M.P., Stevens S.L., Simon R.P. Genomics of preconditioning. Stroke. 2004; 35: 2683–2686.
  68. Stenzel-Poore M.P., Stevens S.L., Xiong Z. et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003; 362: 1028–1037.
  69. Stenzel-Poore M.P., Stevens S.L., King J.S., Simon R.P. Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke. 2007; 38: 680–685.
  70. Tanaka H., Grooms S.Y., Bennett M.V., Zukin R.S. The AMPAR subunit GluR2: still front and center-stage. Brain Res. 2000; 886(1-2): 190-207.
  71. Tang Y., Pacary E., Freret T. et al. Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol. Dis. 2006; 21 (1): 18–28.
  72. Toosy N., McMorris E.L., Grace P.A., Mathie R.T. Ischaemic preconditioning protects the rat kidney from reperfusion injury. BJU Int. 1999; 84: 489–494.
  73. Vlasov T.D., Korzhevskii D.E., Polyakova E.A. Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury. Neurosci. Behav. Physiol. 2005; 35: 567–572.
  74. Wick A., Wick W., Waltenberger J. et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neurosci. 2002; 22 (15): 6401–6407.
  75. Yano S., Morioka M., Fukunaga K. et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 2001; 21 (4): 351–360.
  76. Yoshida M., Nakakimura K., Cui Y.J. et al. Adenosine A1 receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab.2004; 24: 771–779.
  77. Zhang H.X., Du G.H. Zhang J.T. Ischemic preconditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat. Neurol. Res. 2003; 25: 471–476.
  78. Zhang X., Xiong L., Hu W. et al. Preconditioning with prolonged oxygen exposure induces ischemic tolerance in the brain via oxygen free radical formation. Can. J. Anaesth. 2004; 51 (3): 258–263.

Statistics

Views

Abstract - 368

PDF (Russian) - 301

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies