Systemic Inflammatory Response as a Prognostic Factor in Breast Cancer. Part I. Tumor-Promoting Inflammation. Serum Inflammatory Markers

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Chronic inflammation caused by exposure to external or internal factors increases the risk of developing malignancies and promotes tumor progression due to the influence on the key elements of carcinogenic mechanisms. At the system level signs of a chronic inflammation are manifested by an increase of inflammatory mediators and acute phase proteins levels in the blood, a change in the ratio of circulating leukocyte populations, and disturbances in the hemostasis system. This review is devoted to serum and hematological parameters of the systemic inflammatory response (SIR) in breast cancer (BC). The first part of the review outlines general concept about the role of inflammatory factors in the development of malignant tumors. It provides information on the most well studied serum inflammatory markers in breast cancer: cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), as well as C-reactive protein (CRP). The main properties of these polypeptides, which link them with tumor-promoting inflammation, are considered. An analysis of the data on the clinical significance of the serum level of cytokines and CRP in breast cancer accumulated to date is presented. Correlations of the elevated levels of the serum inflammatory markers with clinical and morphological characteristics of the disease, tumor response to chemotherapy, overall and relapse-free survival of patients indicate the feasibility of in-depth investigation of the issue for the purpose of the practical application of the systemic inflammatory markers as predictive and prognostic indicators in BC.

Full Text

Restricted Access

About the authors

Natalia S. Sergeeva

P.A. Herzen Moscow Oncology Research Institute

Email: prognoz.01@mail.ru
ORCID iD: 0000-0001-7406-9973
SPIN-code: 1805-8141
Scopus Author ID: 7102748586
ResearcherId: I-2033-2014

PhD in Biology, Professor

Russian Federation, Moscow

Tatiana A. Karmakova

P.A. Herzen Moscow Oncology Research Institute

Author for correspondence.
Email: kalmar123@yandex.ru
ORCID iD: 0000-0002-8017-5657
SPIN-code: 4364-6134
Scopus Author ID: 6603382243
ResearcherId: L-3592-2018

PhD in Biology

Russian Federation, Moscow

Marianna A. Polyak

P.A. Herzen Moscow Oncology Research Institute

Email: marianna29@yandex.ru
ORCID iD: 0000-0003-3347-3106
SPIN-code: 1134-3930
Russian Federation, Moscow

Igor I. Alentov

P.A. Herzen Moscow Oncology Research Institute

Email: igoralentov@yandex.ru
ORCID iD: 0000-0002-5920-5823
SPIN-code: 9992-7676
Scopus Author ID: 54683346300

PhD in Biology

Russian Federation, Moscow

Andrey D. Kaprin

National Medical Radiology Research Center; Peoples’ Friendship University of Russia

Email: kaprin@mail.ru
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101
Scopus Author ID: 6602709853

MD, PhD, Professor, Academician of the Russian Academy of Medical Sciences

Russian Federation, Obninsk, Kaluga Region; Moscow

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: https://doi.org/10.3322/caac.21660
  2. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность) / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. — М.: МНИОИ им. П.А. Герцена, 2021. — 252 с. [Malignant neoplasms in Russia in 2019 (incidence and mortality). Kaprin AD, Starinsky VV, Shakhzadova AO (eds). Moscow: P.A. Herzen Moscow State Medical Research Institute; 2021. 252 p. (In Russ.)]
  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: https://doi.org/10.1016/j.cell.2011.02.013
  4. Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi: https://doi.org/10.1016/j.immuni.2019.06.025
  5. Hibino S, Kawazoe T, Kasahara H, et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021;22(11):5421. doi: https://doi.org/10.3390/ijms22115421
  6. Brenner DR, Scherer D, Muir K, et al. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1729–1751. doi: https://doi.org/10.1158/1055-9965.EPI-14-0064
  7. Guner A, Kim H-I. Biomarkers for evaluating the inflammation status in patients with cancer. J Gastric Cancer. 2019;19(3):254–277. doi: https://doi.org/10.5230/jgc.2019.19.e29
  8. Maharjan CK, Mo J, Wang L, et al. Natural and synthetic estrogens in chronic inflammation and breast cancer. Cancers (Basel). 2021;14(1):206. doi: https://doi.org/i10.3390/cancers14010206
  9. Danforth DN. The role of chronic inflammation in the development of breast cancer. Cancers (Basel). 2021;13(15):3918. doi: https://doi.org/10.3390/cancers13153918
  10. Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15(3):139–154. doi: https://doi.org/10.1038/s41574-018-0126-x
  11. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–5941. doi: https://doi.org/10.1038/onc.2016.104
  12. Pereira F, Ferreira A, Reis CA, et al. KRAS as a modulator of the inflammatory tumor microenvironment: Therapeutic implications. Cells. 2022;11(3):398. doi: https://doi.org/10.3390/cells11030398
  13. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–4566. doi: https://doi.org/10.1158/0008-5472.CAN-18-3962
  14. Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, et al. Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Front Oncol. 2021;10:614468. doi: https://doi.org/10.3389/fonc.2020.614468
  15. Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can cancer get the message? Cancers (Basel). 2022;14(9):2178. doi: https://doi.org/10.3390/cancers14092178
  16. Jones VS, Huang RY, Chen LP, et al. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta. 2016;1865(2):255–265. doi: https://doi.org/10.1016/j.bbcan.2016.03.005
  17. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30(5):668–681. doi: https://doi.org/10.1016/j.ccell.2016.09.011
  18. Middleton JD, Stover DG, Hai T. Chemotherapy-exacerbated breast cancer metastasis: A paradox explainable by dysregulated adaptive-response. Int J Mol Sci. 2018;19(11):3333. doi: https://doi.org/10.3390/ijms19113333
  19. D’Alterio C, Scala S, Sozzi G, et al. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol. 2020;60:351–361. doi: https://doi.org/10.1016/j.semcancer.2019.08.019
  20. Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. — М.: Фолиант, 2018. — 52 с. [Simbirtsev AS. Cytokines in the pathogenesis and treatment of human diseases. Moscow: Foliant; 2018. 52 p. (In Russ.)]
  21. Chen Y, Zhong H, Zhao Y, et al. Role of platelet biomarkers in inflammatory response. Biomark Res. 2020;8:28. doi: https://doi.org/10.1186/s40364-020-00207-2
  22. Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, et al. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 2015;35(1):1–16. doi: https://doi.org/10.1089/jir.2014.0026
  23. Kaur RP, Vasudeva K, Singla H, et al. Analysis of pro- and anti-inflammatory cytokine gene variants and serum cytokine levels as prognostic markers in breast cancer. J Cell Physiol. 2018;233(12):9716–9723. doi: https://doi.org/10.1002/jcp.26901
  24. Lv Z, Liu M, Shen J, et al. Association of serum interleukin-10, interleukin-17A and transforming growth factor-α levels with human benign and malignant breast diseases. Exp Ther Med. 2018;15(6):5475–5480. doi: https://doi.org/10.3892/etm.2018.6109
  25. Paccagnella M, Abbona A, Michelotti A, et al. Circulating cytokines in metastatic breast cancer patients select different prognostic groups and patients who might benefit from treatment beyond progression. Vaccines (Basel). 2022;10(1):78. doi: https://doi.org/10.3390/vaccines10010078
  26. Kawaguchi K, Sakurai M, Yamamoto Y, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep. 2019;9(1):2924. doi: https://doi.org/10.1038/s41598-019-39476-9
  27. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127–148. doi: https://doi.org/10.1093/intimm/dxaa078
  28. Chen K, Satlof L, Stoffels G, et al. Cytokine secretion in breast cancer cells — MILLIPLEX assay data. Data Brief. 2019;28:104798. doi: https://doi.org/10.1016/j.dib.2019.104798
  29. Masjedi A, Hashemi V, Hojjat-Farsangi M, et al. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother. 2018;108:1415–1424. doi: https://doi.org/10.1016/j.biopha.2018.09.177
  30. Lee HJ, Zhuang G, Cao Y, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell. 2014;26(2):207–221. doi: https://doi.org/10.1016/j.ccr.2014.05.019
  31. Jia D, Li L, Andrew S, et al. An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis. 2017;8(7):e2932. doi: https://doi.org/10.1038/cddis.2017.319
  32. Shi Z, Yang WM, Chen LP, et al. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat. 2012;135(3):737–747. doi: https://doi.org/10.1007/s10549-012-2196-0
  33. Tsukamoto H, Fujieda K, Senju S, et al. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci. 2018;109(3):523–530. doi: https://doi.org/10.1111/cas.13433
  34. Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res. 2013;33(10):563–570. doi: https://doi.org/10.1089/jir.2013.0023
  35. Mishra A, Suman KH, Nair N, et al. An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer. Mol Biol Rep. 2021;48(9):6551–6561. doi: https://doi.org/10.1007/s11033-021-06648-8
  36. De Campos Zuccari DAP, Leonel C, Castro R, et al. An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem. 2012;114(6):571–576. doi: https://doi.org/10. 1016/j.acthis.2011.10.007
  37. Ruffini PA. The CXCL8-CXCR1/2 axis as a therapeutic target in breast cancer stem-like cells. Front Oncol. 2019;9:40. doi: https://doi.org/10. 3389/fonc.2019.00040
  38. Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–497. doi: https://doi.org/10.1172/JCI39397
  39. Yi M, Peng C, Xia B, et al. CXCL8 facilitates the survival and paclitaxel-resistance of triple-negative breast cancers. Clin Breast Cancer. 2022;22(2):e191–e198. doi: https://doi.org/10.1016/j.clbc.2021.06.009
  40. Cruceriu D, Baldasici O, Balacescu O, et al. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1–18. doi: https://doi.org/10.1007/s13402-019-00489-1
  41. Montfort A, Colacios C, Levade T, et al. The TNF paradox in cancer progression and immunotherapy. Front Immunol. 2019;10:1818. doi: https://doi.org/10.3389/fimmu.2019.01818
  42. Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis. Cell Mol Bioeng. 2021;15(1):1–13. doi: https://doi.org/10.1007/s12195-021-00694-9
  43. Mercogliano MF, Bruni S, Elizalde PV, et al. Tumor necrosis factor α blockade: An opportunity to tackle breast cancer. Front Oncol. 2020;10:584. doi: https://doi.org/10.3389/fonc.2020.00584
  44. Liu W, Lu X, Shi P, et al. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF- B pathway. Sci Rep. 2020;10(1):1804. doi: https://doi.org/10.1038/s41598-020-58642-y
  45. Zhang GJ, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 1999;19(2B):1427–1432.
  46. Pusztai L, Gregory BW, Baggerly KA, et al. Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer. 2004;100(9):1814–1822. doi: https://doi.org/10.1002/cncr.20203
  47. Shimura T, Shibata M, Gonda K, et al. Prognostic impact of interleukin-6 and C-reactive protein on patients with breast cancer. Oncol Lett. 2019;17(6):5139–5146. doi: https://doi.org/10.3892/ol.2019.10183
  48. Fuksiewicz M, Kowalska M, Kotowicz B, et al. Serum soluble tumour necrosis factor receptor type I concentrations independently predict prognosis in patients with breast cancer. Clin Chem Lab Med. 2010;48(10):1481–1486. doi: https://doi.org/10.1515/CCLM.2010.278
  49. Cho YA, Sung MK, Yeon JY, et al. Prognostic role of interleukin-6, interleukin-8, and leptin levels according to breast cancer subtype. Cancer Res Treat. 2013;45(3):210–219. doi: https://doi.org/10.4143/crt.2013.45.3.210
  50. Tripsianis G, Papadopoulou E, Anagnostopoulos K, et al. Coexpression of IL-6 and TNF-α: prognostic significance on breast cancer outcome. Neoplasma. 2014;61(2):205–212. doi: https://doi.org/10.4149/neo_2014_026
  51. Noman AS, Uddin M, Chowdhury AA, et al. Serum sonic hedgehog (SHH) and interleukin-(IL-6) as dual prognostic biomarkers in progressive metastatic breast cancer. Sci Rep. 2017;7(1):1796. doi: https://doi.org/10.1038/s41598-017-01268-4
  52. Ma YY, Wang H, Zhao WD, et al. Prognostic value of combined lactate dehydrogenase, C-reactive protein, Cancer Antigen 153 and Cancer Antigen 125 in metastatic breast cancer. Cancer Control. 2022;29:10732748211053150. doi: https://doi.org/10.1177/10732748211053150
  53. Wang H, Yang X. Association between serum cytokines and progression of breast cancer in Chinese population. Medicine (Baltimore). 2017;96(49):e8840. doi: https://doi.org/10.1097/MD.0000000000008840
  54. Paz MFCJ, Gomes Júnior AL, Islam MT, et al. Assessment of chemotherapy on various biochemical markers in breast cancer patients. J Cell Biochem. 2018;119(3):2923–2928. doi: https://doi.org/10.1002/jcb.26487
  55. Li F, Wei L, Li S, et al. Indoleamine-2,3-dioxygenase and interleukin-6 associated with tumor response to neoadjuvant chemotherapy in breast cancer. Oncotarget. 2017;8(64):107844–107858. doi: https://doi.org/10.18632/oncotarget.22253
  56. Tripsianis G, Papadopoulou E, Romanidis K, et al. Overall survival and clinicopathological characteristics of patients with breast cancer in relation to the expression pattern of HER-2, IL-6, TNF-α and TGF-β1. Asian Pac J Cancer Prev. 2013;14(11):6813–6820. doi: https://doi.org/10.7314/apjcp.2013.14.11.6813
  57. Ma Y, Ren Y, Dai ZJ, et al. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med. 2017;26(3):421–426. doi: https://doi.org/10.17219/acem/62120
  58. Salgado R, Denkert C, Demaria S, et al; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–271. doi: https://doi.org/10.1093/annonc/mdu450
  59. Lin S, Gan Z, Han K, et al. Interleukin-6 as a prognostic marker for breast cancer: a meta-analysis. Tumori. 2015;101(5):535–541. doi: https://doi.org/10.5301/tj.5000357
  60. Sparano JA, O’Neill A, Graham N, et al. Inflammatory cytokines and distant recurrence in HER2-negative early breast cancer. NPJ Breast Cancer. 2022;8(1):16. doi: https://doi.org/10.1038/s41523-021-00376-9
  61. Gupta N, Goswami B, Mittal P. Effect of standard anthracycline based neoadjuvant chemotherapy on circulating levels of serum IL-6 in patients of locally advanced carcinoma breast — a prospective study. Int J Surg. 2012;10(10):638–640. doi: https://doi.org/10.1016/j.ijsu.2012.11.007
  62. Mittal P, Gupta N, Goswami B. Serum IL-6 level as a predictor of response to neo-Adjuvant chemotherapy in patients of breast carcinoma. Hellenic Journal of Surgery. 2016;88:306–310. doi: https://doi.org/10.1007/s13126-016-0338-2
  63. Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res. 2004;10(21):7157–7162. doi: https://doi.org/10.1158/1078-0432.CCR-04-0812
  64. Tiainen L, Hämäläinen M, Luukkaala T, et al. Low plasma IL-8 levels during chemotherapy are predictive of excellent long-term survival in metastatic breast cancer. Clin Breast Cancer. 2019;19(4):e522–e533. doi: https://doi.org/10.1016/j.clbc.2019.03.006
  65. Derin D, Soydinc HO, Guney N, et al. Serum IL-8 and IL-12 levels in breast cancer. Med Oncol. 2007;24(2):163–168. doi: https://doi.org/10.1007/BF02698035
  66. Berberoglu U, Yildirim E, Celen O. Serum levels of tumor necrosis factor alpha correlate with response to neoadjuvant chemotherapy in locally advanced breast cancer. Int J Biol Markers. 2004;19(2):130–134. doi: https://doi.org/10.1177/172460080401900207
  67. Fuksiewicz M, Kowalska M, Kotowicz B, et al. Serum soluble tumour necrosis factor receptor type I concentrations independently predict prognosis in patients with breast cancer. Clin Chem Lab Med. 2010;48(10):1481–1486. doi: https://doi.org/10.1515/CCLM.2010.278
  68. Griffith KA, Ryan AS. IL-6 and soluble receptors in overweight and obese African American women with and without breast cancer. Biol Res Nurs. 2021;23(2):218–222. doi: https://doi.org/10.1177/1099800420945787
  69. Zhu X, Du L, Feng J, et al. Clinicopathological and prognostic significance of serum cytokine levels in breast cancer. Clin Lab. 2014;60(7):1145–1151. doi: https://doi.org/10.7754/clin.lab.2013.130738
  70. Kim JW, Lee S, Kim HS, et al. Prognostic effects of cytokine levels on patients treated with taxane and zoledronic acid for metastatic breast cancer in bone (BEAT-ZO) (KCSG BR 10-13). Cytokine. 2021;142:155487. doi: https://doi.org/10.1016/j.cyto.2021.155487
  71. Вельков В.В. С-реактивный белок — «золотой маркер», многозначительный и незаменимый в лабораторной диагностике острых воспалительных процессов и оценке рисков сосудистых патологий. — М.: Диакон, 2012. — 80 с. [Velkov VV. C-reactive protein is a "gold marker", meaningful and indispensable in the laboratory diagnosis of acute inflammatory processes and risk of vascular pathologies assessment. Moscow: Diakon; 2012. 80 p. (In Russ.)]
  72. Salazar J, Martínez MS, Chávez-Castillo M, et al. C-reactive protein: An in-depth look into structure, function, and regulation. Int Sch Res Notices. 2014;2014:653045. doi: https://doi.org/10.1155/2014/653045
  73. Bruserud Ø, Aarstad HH, Tvedt THA. Combined C-reactive protein and novel inflammatory parameters as a predictor in cancer — What can we learn from the hematological experience? Cancers (Basel). 2020;12(7):1966. doi: https://doi.org/10.3390/cancers12071966
  74. Potempa LA, Rajab IM, Olson ME, et al. C-reactive protein and cancer: Interpreting the differential bioactivities of its pentameric and monomeric, modified isoforms. Front Immunol. 2021;12:744129. doi: https://doi.org/10.3389/fimmu.2021.744129
  75. Hart PC, Rajab IM, Alebraheem M, et al. C-reactive protein and cancer-diagnostic and therapeutic insights. Front Immunol. 2020;11:595835. doi: https://doi.org/10.3389/fimmu.2020.595835
  76. Dolan RD, Laird BJA, Horgan PG, et al. The prognostic value of the systemic inflammatory response in randomised clinical trials in cancer: A systematic review. Crit Rev Oncol Hematol. 2018;132:130–137. doi: https://doi.org/10.1016/j.critrevonc.2018.09.016
  77. Guo L, Liu S, Zhang S, et al. C-reactive protein and risk of breast cancer: A systematic review and meta-analysis. Sci Rep. 2015;5:10508. doi: https://doi.org/10.1038/srep10508
  78. Proctor MJ, Talwar D, Balmar SM, et al. The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. Br J Cancer. 2010;103(6):870–876. doi: https://doi.org/10.1038/sj.bjc.6605855
  79. Ravishankaran P, Karunanithi R. Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol. 2011;9:18. doi: https://doi.org/10.1186/1477-7819-9-18
  80. Netterberg I, Karlsson MO, Nielsen EI, et al. The risk of febrile neutropenia in breast cancer patients following adjuvant chemotherapy is predicted by the time course of interleukin-6 and C-reactive protein by modelling. Br J Clin Pharmacol. 2018;84(3):490–500. doi: https://doi.org/10.1111/bcp.13477
  81. Han Y, Mao F, Wu Y, et al. Prognostic role of C-reactive protein in breast cancer: a systematic review and meta-analysis. Int J Biol Markers. 2011;26(4):209–215. doi: https://doi.org/10.5301/JBM.2011.8872
  82. Takeuchi H, Kawanaka H, Fukuyama S et al. Comparison of the prognostic values of preoperative inflammation-based parameters in patients with breast cancer. PLoS One. 2017;12(5):e0177137. doi: https://doi.org/10.1371/journal.pone.0177137
  83. Honecker F, Harbeck N, Schnabel C, et al. Geriatric assessment and biomarkers in patients with metastatic breast cancer receiving first-line mono-chemotherapy: Results from the randomized phase III PELICAN trial. J Geriatr Oncol. 2018;9(2):163–169. doi: https://doi.org/10.1016/j.jgo.2017.09.009
  84. Miyagawa Y, Yanai A, Yanagawa T, et al. Baseline neutrophil-to-lymphocyte ratio and c-reactive protein predict efficacy of treatment with bevacizumab plus paclitaxel for locally advanced or metastatic breast cancer. Oncotarget. 2020;11(1):86–98. doi: https://doi.org/10.18632/oncotarget.27423
  85. Nome ME, Euceda LR, Jabeen S, et al. Serum levels of inflammation-related markers and metabolites predict response to neoadjuvant chemotherapy with and without bevacizumab in breast cancers. Int J Cancer. 2020;146(1):223–235. doi: https://doi.org/10.1002/ijc.32638
  86. Wang D, Duan L, Tu Z, et al. The Glasgow Prognostic Score predicts response to chemotherapy in patients with metastatic breast cancer. Chemotherapy. 2016;61(4):217–222. doi: https://doi.org/10.1159/000443367
  87. Mikkelsen MK, Lindblom NAF, Dyhl-Polk A, et al. Systematic review and meta-analysis of C-reactive protein as a biomarker in breast cancer. Crit Rev Clin Lab Sci. 2022;1–21. doi: https://doi.org/10.1080/10408363.2022.2050886
  88. Jabeen S, Zucknick M, Nome M, et al. Serum cytokine levels in breast cancer patients during neoadjuvant treatment with bevacizumab. Oncoimmunology. 2018;7(11):e1457598. doi: https://doi.org/10.1080/2162402X.2018.1457598
  89. Kawaguchi K, Sakurai M, Yamamoto Y, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep. 2019;9(1):2924. doi: https://doi.org/10.1038/s41598-019-39476-9
  90. Paccagnella M, Abbona A, Michelotti A, et al. Circulating cytokines in metastatic breast cancer patients select different prognostic groups and patients who might benefit from treatment beyond progression. Vaccines (Basel). 2022;10(1):78. doi: https://doi.org/10.3390/vaccines10010078
  91. Li L, Chen L, Zhang W, et al. Serum cytokine profile in patients with breast cancer. Cytokine. 2017;89:173–178. doi: https://doi.org/10.1016/j.cyto.2015.12.017

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies