Frontiers and Structural Transformations of the Global Pharmaceutical Market

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. In order to achieve the technological sovereignty of the Russian Federation, the transformation of existing scientific reserves into in-demand technologies and technologically independent sectors of the economy, special attention is paid to the frontier areas of world science. At the same time, frontiers are understood as thematic areas on the basis of which Russian critical technologies will be developed in the import-saving paradigm. Aims — the purpose of the study is to identify the most promising niches of the global pharmaceutical market and research areas focused on their expansion. Methods. Analysis of the volume of R&D financing by the world’s leading pharmaceutical companies in the period 2015–2022, multi-criteria scientometric analysis and thematic mapping of the collection of the most highly cited reviews published in 2020–2022 and indexed in the Scopus database. Results. The analysis of the volume of R&D financing by the world’s leading pharmaceutical companies in the period 2015–2022, and their average annual growth rates, was carried out. It is shown that with an annual increase in the corporate R&D budget of 2.8%, by 2022 the total R&D expenditures of key players in the global pharmaceutical market reached $182 billion per year. At the same time, 60% of these funds ($109.4 billion) fell in 2022 to the top 20 global pharmaceutical companies investing in the development of new medicines. For comparison, the internal costs of research and development of the Russian Federation are given, which, taking into account the GDP deflator as of 08.04.2022, are estimated at $48 billion, of which the amount of budget funding provided in 2023 for the priority direction of the Strategy of Scientific and Technological Development of the Russian Federation “Transition to personalized medicine, high-tech healthcare and technologies health savings, including through the rational use of medicines (primarily antibacterial)”, will amount to 39.5 billion rubles. Given the relatively low level of funding for domestic research and development of new medicines (compared to the budgets for R&D of pharmaceutical companies in the world), it seemed important to identify the most promising niches of the global pharmaceutical market and research areas focused on their expansion. Conclusion. As a result of multi-criteria scientometric analysis and thematic mapping of the collection of the most highly cited reviews published in 2020–2022 and indexed in the Scopus database, 10 frontier research areas have been identified that have the potential to transform the structure of the global pharmaceutical market until 2030.

Full Text

Restricted Access

About the authors

O. S. Kobyakova

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Email: kobyakovaos@mednet.ru
ORCID iD: 0000-0003-0098-1403
SPIN-code: 1373-0903

MD, PhD, Professor

Russian Federation, Moscow

Vladimir I. Starodubov

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Email: starodubov@mednet.ru
ORCID iD: 0000-0002-3625-4278
SPIN-code: 7223-9834

MD, PhD, Professor, Academician of the RAS

Russian Federation, Moscow

Ivan A. Deev

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Email: deevia@mednet.ru
SPIN-code: 2730-0004
Russian Federation, Moscow

Alexander F. Kanev

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Email: alexkanev92@gmail.com
SPIN-code: 5907-6834
Russian Federation, Moscow

Natalia G. Kurakova

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Email: idmz@mednet.ru
ORCID iD: 0000-0003-1896-6420
SPIN-code: 5741-6679

PhD in Biology

Russian Federation, Moscow

Liliya A. Tsvetkova

Russian Research Institute of Health, Ministry of Health of the Russian Federation

Author for correspondence.
Email: idmz@yandex.ru
ORCID iD: 0000-0001-9381-4078
SPIN-code: 8668-9347

PhD in Biology

Russian Federation, Moscow

References

  1. Установочная стратегическая сессия Правительства Российской Федерации, посвященная вопросам научно-технологического развитии российской экономики. Москва, Координационный центр Правительства РФ, 28 июня 2022 г.
  2. Постановление Правительства РФ от 30 марта 2022 г. № 510 «О внесении изменений в Правила предоставления субсидий из федерального бюджета российским организациям на финансовое обеспечение затрат на проведение научно-исследовательских и опытно-конструкторских работ по современным технологиям в рамках реализации такими организациями инновационных проектов». Available from: http://government.ru/docs/all/140095/
  3. Указ Президента РФ от 15 марта 2021 г. № 143 «О мерах по повышению эффективности государственной научно-технической политики» // Официальный сайт Президента РФ. Available from: http://www.kremlin.ru/acts/bank/46506 (accessed: 24.02.2022).
  4. Указ Президента РФ от 15 марта 2021 г. № 144 «О некоторых вопросах Совета при Президенте Российской Федерации по науке и образованию» // Гарант. Available from: https://base.garant.ru/400448159 (accessed: 24.02.2022).
  5. Report: Global trends in R&D: Overview through 2021. IQVIA Institute for Human Data Science, Feb. 2022. Available from: https://www.iqvia.com/insights/the-iqvia-institute/reports/global-trends-in-r-and-d-2022 (accessed: 16.07.2022).
  6. Evaluate Pharma — World Preview 2020. Outlook to 2026. Evaluate. 13th ed. July 2020. Available from: https://fondazionecerm.it/wp-content/uploads/2020/07/EvaluatePharma-World-Preview-2020_0.pdf
  7. Announcing evaluate’s next step — аналитические данные агентства Norstella. Available from: http://evaluategroup.com (accessed: 14.07.2022).
  8. U.S. Food & Drug Administration. Available from: http://fda.gov (accessed: 15.07.2022).
  9. European Medicines Agence / Science medicines Health. Available from: http://ema.europa.eu (accessed: 12.07.2022).
  10. Fierce Pharma. Available from: http://fiercepharma.com (accessed: 22.07.2022).
  11. The Pharma Letter. Available from: http://thepharmaletter.com (accessed: 16.07.2022).
  12. EvaluatePharma World Preview 2016, Outlook to 2022. Evaluate. 9th ed. September 2016. Available from: https://studyres.com/doc/15496212/world-preview-2016--outlook-to-2022?ysclid=l63q2czkmo65058557
  13. Доклад Правительства РФ о реализации основных направлений государственной научно-технической политики, государственной программы в области научно-технологического развития, важнейших инновационных проектов государственного значения, 2022 (проект).
  14. Damase TR, Sukhovershin R, Boada Ch, et al. The Limitless Future of RNA Therapeutics. Frontiers Bioeng Biotechnol. 2021;9:628137. doi: https://doi.org/10.3389/fbioe.2021.628137
  15. Amgen and Arrakis therapeutics announce multi-target collaboration to identify novel RNA degrader small molecule therapeutics. Amgen, Jan. 11 2022. Available from: https://www.prnewswire.com/news-releases/amgen-and-arrakis-therapeutics-announce-multi-target-collaboration-to-identify-novel-rna-degrader-small-molecule-therapeutics-301458380.html (accessed: 22.07.2022).
  16. Developing treatments for genetic diseases caused by nonsense mutations / Urania Therapeutics. Available from: https://www.uraniatx.com/ (accessed: 22.07.2022).
  17. Schilff M, Sargsyan Y, Hofhuis J, et al. Stop Codon Context-Specific Induction of Translational Readthrough. Biomolecules. 2021;11(7):1006. doi: https://doi.org/10.3390/biom11071006
  18. Hameed SA, Paul S, Dellosa, Giann Kerwin YD, et al. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines. 2022;7(1):71. doi: https://doi.org/10.1038/s41541-022-00485-x
  19. Our journey to building the best version of Moderna. Read our 2021 ESG Report / MODERNA, 2021. Available from: https://www.modernatx.com/ (accessed: 22.07.2022).
  20. DeLucia DC, Lee JK. Development of Cancer Immunotherapies. Cancer Treat Res. 2022;183:1–48. doi: https://doi.org/10.1007/978-3-030-96376-7_1
  21. Shi T, Ma Y, Yu L, et al. Cancer immunotherapy: A focus on the regulation of immune checkpoints. Int J Mol Sci. 2018;19(5):1389. doi: https://doi.org/10.3390/ijms19051389
  22. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–668. doi: https://doi.org/10.1038/s41577-020-0306-5
  23. Wang Z, Peng H, Shi W, et al. Application of photodynamic therapy in cancer: Challenges and advancements. Biocell. 2021;45(3):489–500. doi: https://doi.org/10.32604/BIOCELL.2021.014439
  24. Norman RA, Ambrosetti F, Bonvin AMJJ, et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform. 2020;21(5):1549–1567. doi: https://doi.org/10.1093/bib/bbz095
  25. Naidoo BN, Chuturgoon AA. Nanobodies Enhancing Cancer Visualization, Diagnosis and Therapeutics. Int J Mol Sci. 2021;22(18):9778. doi: https://doi.org/10.3390/ijms22189778
  26. Gajdosik Z. Upadacitinib tartrate: Tyrosine-protein kinase JAK1 inhibitor Treatment of autoimmune inflammatory diseases Treatment of rheumatoid arthritis. Drugs of the Future. 2018;43(10):731–743. doi: https://doi.org/10.1358/dof.2018.043.10.2849626
  27. Han Q, Guo M, Zheng Y, et al. Current Evidence of Interleukin-6 Signaling Inhibitors in Patients with COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020;11:615972. doi: https://doi.org/10.3389/fphar.2020.615972
  28. Broekhoff TF, Sweegers CCG, Krijkamp EM, et al. Early Cost-Effectiveness of Onasemnogene Abeparvovec-xioi (Zolgensma) and Nusinersen (Spinraza) Treatment for Spinal Muscular Atrophy I in The Netherlands with Relapse Scenarios. Value Health. 2021;24(6):759–769. doi: https://doi.org/10.1016/j.jval.2020.09.021
  29. Chira S, Gulei D, Hajitou A, et al. CRISPR/Cas9: Transcending the Reality of Genome Editing. Mol Ther Nucleic Acids. 2017;7:211–222. doi: https://doi.org/10.1016/j.omtn.2017.04.001
  30. Lapteva L, Purohit-Sheth T, Serabian MA, et al. Clinical Development of Gene Therapies: The First Three Decades and Counting. Mol Ther Methods Clin Dev. 2020;19:387–397. doi: https://doi.org/10.1016/j.omtm.2020.10.004
  31. Cooper ML, Ottaviano G, DiPersio JF, et al. Off-the-Shelf CAR-T // Ghobadi A, DiPersio JF (eds). Gene and Cellular Immunotherapy for Cancer. Cancer Drug Discovery and Development. Humana, Cham; 2022. doi: https://doi.org/10.1007/978-3-030-87849-8_7
  32. Savic RM, Green ML, Jorga K, et al. Model‐informed drug development of voxelotor in sickle cell disease: Population pharmacokinetics in whole blood and plasma. CPT Pharmacometrics Syst Pharmacol. 2022;11(6):687–697. doi: https://doi.org/10.1002/psp4.12731
  33. Davies JC, Moskowitz SM, Brown C, et al. VX‐659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med. 2018;379(17):1599–1611. doi: https://doi.org/10.1056/NEJMoa1807119
  34. Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: https://doi.org/10.1038/s41573-020-0090-8
  35. Chahine EB. Fostemsavir: The first oral attachment inhibitor for treatment of HIV-1 infection. Amer J Health Syst Pharm. 2021;78(5):376–388. doi: https://doi.org/10.1093/ajhp/zxaa416
  36. Atanasov AG, Zotchev SB, Dirsch VM, etg al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi: https://doi.org/10.1038/s41573-020-00114-z
  37. Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol. 2021;12:630695. doi: https://doi.org/10.3389/fmicb.2021.630695
  38. NESCO (2021). UNESCO Science Report: the Race Against Time for Smarter Development. S. Schneegans, T. Straza and J. Lewis (eds). UNESCO Publishing: Paris. Available from: http://www.unesco.org/reports/science/2021/en/
  39. Заседание Совета по стратегическому развитию и национальным проектам // Президент РФ: [сайт]. 2022. 18 июля. Available from: http://kremlin.ru/events/president/ news/69019 (дата обращения: 23.07.2022).

Supplementary files

Supplementary Files
Action
1. Fig. 1

Download (221KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies