Study of Generation of Singlet Oxygen in Human Saliva in vitro Under the Action of Nanosecond Pulsed Laser Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. The development of new laser devices for use in the treatment of complex dental pathology and microsurgery of the oral cavity with unique parameters with the ability to generate nanosecond pulsed radiation in a quasi-monochromatic radiation band is necessary. The high peak output power per pulse allows laser light to penetrate deeper into biological media without significant heating. The possibility of excitation of singlet oxygen without the use of endogenous photosensitizers is an indisputable advantage of such laser generators.

Aims — study of singlet oxygen generation in human oral fluid in vitro depending on the parameters of nanosecond pulsed laser radiation with a wavelength of ~1265 nm.

Methods. We used a laser device with a main infrared (IR) emitter with a wavelength approximately corresponding to the oxygen absorption maximum (~1265 nm) with the generation of nanosecond pulsed radiation. A study was carried out to study the generation of singlet oxygen in the human oral fluid and the washing out of the oral fluid by the fading of the trap in solutions under the action of laser radiation before irradiation, after 30 and 60 min. The laser radiation parameters were set as follows: power 1 W, nanosecond pulsed radiation with a pulse duration of 400 ns and a frequency of 0.5, 1.0, 1.5 and 2.0 MHz in comparison with the continuous radiation mode.

Results. It has been established that nanosecond laser radiation leads to the oxidation of a chemical singlet oxygen trap solubilized with sodium dodecyl sulfate (0.05 M SDS) detergent in the oral fluid and saliva flushing from the oral cavity. In pulsed nanosecond modes, laser radiation is more efficient than in continuous mode. With an increase in the repetition frequency, an increase in the effect by an average of 10% compared to a lower frequency was observed and the effect with a maximum frequency of 2.0 MHz was almost 50% higher than when using continuous radiation in all studies. A decrease in optical density at 414 nm was reliably observed in samples with oral fluid washing, the effect was 0.07 ± 0.01 for 60 min of exposure. In the oral fluid, the effect with the same parameters was slightly lower and amounted to 0.05 ± 0.03.

Conclusions. The rate of fading of the trap in the saliva wash turned out to be 1.3 times faster than in water with detergent, which may indicate the activation of photoacceptors and their oversaturation with oxygen when using aqueous dilution of the oral fluid. The maximum effect was observed when using laser radiation with a pulse repetition rate of 2.0 MHz.

Full Text

Restricted Access

About the authors

Oleg O. Yanushevich

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

ORCID iD: 0000-0003-0059-4980
SPIN-code: 1452-1387
Scopus Author ID: 57131101200
ResearcherId: AAX-6673-2021

MD, PhD, Professor, Academician of the RAS

Russian Federation, 20/1, Delegatskaya str., 127473, Moscow

Igor V. Maev

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

ORCID iD: 0000-0001-6114-564X
SPIN-code: 1994-0933
Scopus Author ID: 7006155179
ResearcherId: N-9320-2014

MD, PhD, Professor, Academician of the RAS

Russian Federation, 20/1, Delegatskaya str., 127473, Moscow

Ernest A. Bazikyan

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

ORCID iD: 0000-0002-9184-3737
SPIN-code: 8434-1801
Scopus Author ID: 57205681369
ResearcherId: H-3714-2017

MD, PhD, Professor

Russian Federation, 20/1, Delegatskaya str., 127473, Moscow

Andrey A. Chunikhin

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Author for correspondence.
ORCID iD: 0000-0002-9054-9464
SPIN-code: 2691-1347
Scopus Author ID: 57192695496
ResearcherId: O-5596-2014

MD, PhD, Assistant Professor

Russian Federation, 20/1, Delegatskaya str., 127473, Moscow


  1. Алексеев Ю.В., Захаров С.Д., Иванов А.В. Фотодинамический и светокислородный эффекты: общность и различия // Лазерная медицина. — 2012. — Т. 16. — № 4. — С. 4–9. [Alekseev JuV, Zaharov SD, Ivanov AV. Photodynamic and light-oxygen effects: commonality and differences. Laser Medicine. 2012;16(4):4–9. (In Russ.)]
  2. Гейниц А.В., Сорокатый А.Е., Ягудаев Д.М., и др. Современный взгляд на механизм фотодинамической терапии // Урология. — 2006. — № 5. — С. 94–98. [Gejnic AV, Sorokatyj AE, Jagudaev DM, et al. Modern view on the mechanism of photodynamic therapy. Urology. 2006;5:94–98. (In Russ.)]
  3. Кудрявцева Т.В., Чеминава Н.Р. Влияние минерального состава ротовой жидкости на стоматологическое и соматическое здоровье // Пародонтология. — 2016. — Т. 21. — № 4 (81). — С. 17–23. [Kudrjavceva TV, Cheminava NR. The influence of the mineral composition of oral fluid on dental and somatic health. Periodontics. 2016;21(81):17–23. (In Russ.)]
  4. Мартусевич А.А., Перетягин С.П., Мартусевич А.К. Молекулярные и клеточные механизмы действия синглетного кислорода на биосистемы // Современные технологии в медицине. — 2012. — № 2. — С. 128–134. [Martusevich AA, Peretjagin SP, Martusevich AK. Molecular and cellular mechanisms of action of singlet oxygen on biosystems. Modern Technologies in Medicine. 2012;2:128–134. (In Russ.)]
  5. Чунихин А.А., Саакян М.Ю., Гажва С.И., и др. Разработка наносекундного лазерного модуля, встраиваемого в роботизированный многофункциональный хирургический комплекс для малоинвазивной терапии патологии челюстно-лицевой области и определение эффектов его воздействия на плазму крови // Современные технологии в медицине. — 2016. — Т. 8. — № 4. — С. 30–35. [Chunihin AA, Saakjan MJ, Gazhva SI, et al. Development of a nanosecond laser module built into a robotic multifunctional surgical complex for minimally invasive therapy of the pathology of the maxillofacial region and determination of the effects of its effect on blood plasma. Modern Technologies in Medicine. 2016;8(4):30–35. (In Russ.)] doi:
  6. Чунихин А.А., Базикян Э.А., Сырникова Н.В., и др. Сравнительная оценка эффективности генерации синглетного кислорода лазерным наносекундным модулем робототехнического хирургического комплекса в модельных биохимических средах // Российская стоматология. — 2017. — Т. 10. — № 2. — С. 30–35. [Chunihin AA, Bazikyan EA, Syrnikova NV, et al. Comparative Evaluation of the Efficiency of Singlet Oxygen Generation by a Nanosecond Laser Module of a Robotic Surgical Complex in Model Biochemical Environments. Russian Stomatology. 2017;10(2):30–35. (In Russ.)] doi:
  7. Чунихин А.А., Базикян Э.А., Пихтин Н.А. Лазерный модуль для фотодинамической терапии и робот-ассистированной микрохирургии в стоматологии // Письма в журнал технической физики. — 2017. — Т. 43. — № 11. — С. 12–19. [Chunihin AA, Bazikyan EA, Pihtin NA. A laser unit for photodynamic therapy and robot-assisted microsurgery in dentistry. Technical Physics Letters. 2017.43(6):507–510. (In Russ.)] doi:
  8. Bornhütter T, Ghogare AA, Preuß A, et al. Synthesis, Photophysics and PDT Evaluation of Mono-, Di-, Tri- and Hexa-PEG Chlorins for Pointsource Photodynamic Therapy. Photochem Photobiol. 2017;93(5):1259–1268. doi:
  9. Drobizhev M, Karotki A, Kruk M, et al. Resonance enhancement of two-photon absorption in porphyrins. Chem. Phys. Lett. 2002;355(1–2):175–182. doi:
  10. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58–62.
  11. Слипченко С.О., Подоскин А.А., Винокуров Д.А., и др. Полупроводниковые лазеры (1020–1100 нм) с асимметричным расширенным одномодовым волноводом на основе гетероструктур AlGaAs/GaAs // Физика и техника полупроводников. — 2013. — Т. 47. — № 8. — C. 1082–1086. [Slipchenko SO, Podoskin AA, Vinokurov DA, et al. AlGaAs/GaAs diode lasers (1020–1100 nm) with an asymmetric broadened single transverse mode waveguide. Semiconductors. 2013.47:1079–1083. (In Russ.)] doi:
  12. Веселов Д.А., Шашкин И.С., Пихтин Н.А., и др. Подавление процесса делокализации носителей заряда в мощных импульсных полупроводниковых лазерах // Письма в журнал технической физики. — 2015. — Т. 41. — № 6. — С. 10–16. [Veselov DA, Shakshin IS, Pikhtin NA, et al. Suppressing the process of charge carrier delocalization in high-power pulse-pumped semiconductor lasers. Technical Physics Letters. 2015;41:263–265. (In Russ.)] doi:

Supplementary files

Supplementary Files
1. Fig. 1

Download (65KB)
2. Fig. 2

Download (172KB)

Copyright (c) 2022 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies