The Relationship between Inflammation and Hemostasis Disorders in Cardiovascular and Infectious Diseases
- Authors: Bykov V.V.1,2, Vengerovskii A.I.2, Udut V.V.3,4
-
Affiliations:
- Innovative Pharmacological Research LLC
- Siberian State Medical University
- Goldberg Research Institute of Pharmacology and Regenerative Medicine
- Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 77, No 4 (2022)
- Pages: 261-266
- Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/2124
- DOI: https://doi.org/10.15690/vramn2124
Cite item
Abstract
Thrombosis and inflammation develop concomitantly during inflammatory, cardiovascular and infectious diseases. Thrombosis induces inflammation and immune system disruption, while inflammation leads to increased hemostasis a vascular thrombosis. Combined use of anti-inflammatory and antithrombotic drugs often leads to adverse effects, for example, nonsteroidal anti-inflammatory drugs induce gastric ulcers, aggravated by bleeding. Vascular endothelial dysfunction plays an important role in the development of thrombosis and inflammation, therefore, research and development of drugs improving endothelial function is a promising approach to preventing thrombotic events arising from inflammation or infectious disease.
Full Text

About the authors
Vladimir V. Bykov
Innovative Pharmacological Research LLC; Siberian State Medical University
Email: vladimir.b.1989@gmail.com
ORCID iD: 0000-0002-5145-2184
SPIN-code: 1202-3719
MD, PhD
Russian Federation, 79/4, Elizarovikh str., 634021, Tomsk; TomskAleksandr I. Vengerovskii
Siberian State Medical University
Email: pharm-sibgmu@rambler.ru
ORCID iD: 0000-0001-5094-3742
SPIN-code: 8818-0543
ResearcherId: P-8522-2016
MD, PhD, Professor
Russian Federation, TomskVladimir V. Udut
Goldberg Research Institute of Pharmacology and Regenerative Medicine; Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: udutv@mail.ru
ORCID iD: 0000-0002-3829-7132
SPIN-code: 8645-9815
ResearcherId: A-4208-2017
MD, PhD, Professor, Corresponding Member of the RAS
Russian Federation, TomskReferences
- Creel-Bulos C, Hockstein M, Amin N, et al. Acute Cor Pulmonale in Critically Ill Patients with COVID-19. N Engl J Med. 2020;382(21):e70. doi: https://doi.org/10.1056/NEJMc2010459
- Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424. doi: https://doi.org/10.1111/jth.14830
- Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041
- Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients with COVID-19: Awareness of an Increased Prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
- Hottz ED, Lopes JF, Freitas C, et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood. 2013;122(20):3405–3414. doi: https://doi.org/10.1182/blood-2013-05-504449
- Nicolai L, Schiefelbein K, Lipsky S, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun. 2020;11(1):5778. doi: https://doi.org/10.1038/s41467-020-19515-0
- von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: https://doi.org/10.1084/jem.20112322
- Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–1961. doi: https://doi.org/10.1182/blood-2011-03-343061
- Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–896. doi: https://doi.org/10.1038/nm.2184
- Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight. Blood. 2019;133(20):2186–2197. doi: https://doi.org/10.1182/blood-2018-10-862243
- Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol. 2011;12(12):1194–1201. doi: https://doi.org/10.1038/ni.2140
- Sreeramkumar V, Adrover JM, Ballesteros I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346 (6214):1234–1238. doi: https://doi.org/10.1126/science.1256478
- Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24(24):2166–2179. doi: https://doi.org/10.1016/j.ehj.2003.08.021
- Rossaint J, Kühne K, Skupski J, et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun. 2016;7:13464. doi: https://doi.org/10.1038/ncomms13464
- Schmidt CQ, Verschoor A. Complement and coagulation: so close, yet so far. Blood. 2017;130(24):2581–2582. doi: https://doi.org/10.1182/blood-2017-10-811943
- Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–2175. doi: https://doi.org/10.1016/j.molimm.2010.05.009
- Wu C, Lu W, Zhang Y, et al. Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity. 2019;50(6): 1401–1411.e4. doi: https://doi.org/10.1016/j.immuni.2019.04.003
- Yang X, Cheng X, Tang Y, et al. Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity. 2019;51(6):983–996.e6. doi: https://doi.org/10.1016/j.immuni.2019.11.005
- Pircher J, Czermak T, Ehrlich A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9(1):1523. doi: https://doi.org/10.1038/s41467-018-03925-2
- Döring Y, Drechsler M, Wantha S, et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res. 2012;110(8):1052–1056. doi: https://doi.org/10.1161/CIRCRESAHA.112.265868
- Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019;50(4):1033–1042.e6. doi: https://doi.org/10.1016/j.immuni.2019.03.003
- Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood. 2017;130(15):1693–1698. doi: https://doi.org/10.1182/blood-2017-06-780882
- Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol. 2016;7:366. doi: https://doi.org/10.3389/fimmu.2016.00366
- Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13(2):169–180. doi: https://doi.org/10.1016/j.chom.2013.01.005
- Boilard E, Paré G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood. 2014;123(18):2854–2863. doi: https://doi.org/10.1182/blood-2013-07-515536
- Wang Y, Gao H, Shi C, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017;8:15559. doi: https://doi.org/10.1038/ncomms15559
- Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37(19):1538–1549. doi: https://doi.org/10.1093/eurheartj/ehv419
- Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest. 2012;122(7):2331–2336. doi: https://doi.org/10.1172/JCI60229
- Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20): 2435–2449. doi: https://doi.org/10.1182/blood-2016-04-710632
- Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–387. doi: https://doi.org/10.1152/physrev.00047.2009
- Gupta N, Sahu A, Prabhakar A, et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763–4768. doi: https://doi.org/10.1073/pnas.1620458114
- Ponomaryov T, Payne H, Fabritz L, et al. Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice. Circ Res. 2017;121(8): 941–950. doi: https://doi.org/10.1161/CIRCRESAHA.117.311185
- Subramaniam S, Jurk K, Hobohm L, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–2302. doi: https://doi.org/10.1182/blood-2016-11-749879
- Yago T, Liu Z, Ahamed J, McEver RP. Cooperative PSGL- 1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 2018;132(13):1426–1437. doi: https://doi.org/10.1182/blood-2018-05-850859
- Brill A, Fuchs TA, Savchenko AS, Thomas GM, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: https://doi.org/10.1111/j.1538-7836.2011.04544.x
- Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–1393. doi: https://doi.org/10.1038/nm.2847
- Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, et al. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front Immunol. 2019;10:2569. doi: https://doi.org/10.3389/fimmu.2019.02569
- Dalager-Pedersen M, Søgaard M, Schønheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation. 2014; 129(13):1387–1396. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.006699
- Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021; 76(4):412–420. doi: https://doi.org/10.1136/thoraxjnl-2020-216243
- Landsem A, Fure H, Christiansen D, et al. The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin Exp Immunol. 2015;182(1):81–89. doi: https://doi.org/10.1111/cei.12663
- Nørgaard I, Nielsen SF, Nordestgaard BG. Complement C3 and High Risk of Venous Thromboembolism: 80517 Individuals from the Copenhagen General Population Study. Clin Chem. 2016;62(3):525–534. doi: https://doi.org/10.1373/clinchem.2015.251314
- Gao SJ, Wei W, Chen JT, et al. Hypereosinophilic syndrome presenting with multiple organ infiltration and deep venous thrombosis: A case report and literature review. Medicine (Baltimore). 2016;95(35):e4658. doi: https://doi.org/10.1097/MD.0000000000004658
- Marx C, Novotny J, Salbeck D, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134(21):1859–1872. doi: https://doi.org/10.1182/blood.2019000518
- Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236–240. doi: https://doi.org/10.1038/s41586-019-1167-6
- Xia GL, Wang YK, Huang ZQ. The Correlation of Serum Myeloid-Related Protein-8/14 and Eosinophil Cationic Protein in Patients with Coronary Artery Disease. Biomed Res Int. 2016;2016:4980251. doi: https://doi.org/10.1155/2016/4980251
- Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. doi: https://doi.org/10.1212/WNL.0000000000009532
- Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512. doi: https://doi.org/10.1002/path.5212
- Tardif JC, Tanguay JF, Wright SR, et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61(20):2048–2055. doi: https://doi.org/10.1016/j.jacc.2013.03.003
- Dhanesha N, Nayak MK, Doddapattar P, et al. Targeting myeloid-cell specific integrin α9β1 inhibits arterial thrombosis in mice. Blood. 2020;135(11):857–861. doi: https://doi.org/10.1182/blood.2019002846
- Ortega-Gomez A, Salvermoser M, Rossaint J, et al. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation. 2016;134(16):1176–1188. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.024790
- Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638–4654. doi: https://doi.org/10.1172/JCI81660
- Franck G, Mawson TL, Folco EJ, et al. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion. Circ Res. 2018;123(1):33–42. doi: https://doi.org/10.1161/CIRCRESAHA.117.312494
- Schreiber A, Rousselle A, Becker JU, et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci USA. 2017;114(45):E9618–E9625. doi: https://doi.org/10.1073/pnas.1708247114
- Sauter RJ, Sauter M, Reis ES, Emschermann FN, et al. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation. 2018;138(16):1720–1735. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.034600
- Gadi I, Fatima S, Elwakiel A, et al. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res. 2021;128(4):513–529. doi: https://doi.org/10.1161/CIRCRESAHA.120.317219
- Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838–1847. doi: https://doi.org/10.1056/NEJMoa2021372
- Kirchhof P, Ezekowitz MD, Purmah Y, et al. Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial. TH Open. 2020;4(1):e20–e32. doi: https://doi.org/10.1055/s-0040-1701206
- Busch G, Seitz I, Steppich B, et al. Coagulation factor Xa stimulates interleukin-8 release in endothelial cells and mononuclear leukocytes: implications in acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25(2):461–466. doi: https://doi.org/10.1161/01.ATV.0000151279.35780.2d
- Ichikawa H, Shimada M, Narita M, et al. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc. 2019;8(8):e012195. doi: https://doi.org/10.1161/JAHA.119.012195
- Mansour A, Bachelot-Loza C, Nesseler N, et al. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci. 2020;21(4):1391. doi: https://doi.org/10.3390/ijms21041391
- Jeong HS, Hong SJ, Cho SA, et al. Comparison of Ticagrelor Versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting: A Prospective, Randomized, Crossover Trial. JACC Cardiovasc Interv. 2017;10(16):1646–1658. doi: https://doi.org/10.1016/j.jcin.2017.05.064
- Morris T, Stables M, Hobbs A, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183(3):2089–2096. doi: https://doi.org/10.4049/jimmunol.0900477
- Sager HB, Heidt T, Hulsmans M, et al. Targeting Interleukin-1β Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation. 2015;132(20):1880–1890. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.016160
- Opstal TSJ, Hoogeveen RM, Fiolet ATL, et al. Colchicine Attenuates Inflammation Beyond the Inflammasome in Chronic Coronary Artery Disease: A LoDoCo2 Proteomic Substudy. Circulation. 2020;142(20):1996–1998. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.05056
- Bykov VV, Smol’yakova VI, Chernysheva GA, et al. Effects of a New Antithrombotic Drug GRS, a Soluble Guanylate Cyclase Stimulator, on Endothelial Dysfunction in Rats with Myocardial Infarction. Bull Exp Biol Med. 2022;172(6):709–712. doi: https://doi.org/10.1007/s10517-022-05461-y
- Быков В.В., Чернышева Г.А., Смольякова В.И., и др. Антиагрегантная активность нового производного индолинона // Экспериментальная и клиническая фармакология. — 2019. — Т. 82. — № 7. — С. 10–13. [Bykov VV, Chernysheva GA, Smolyakova VI, et al. Antiplatelet activity of a new indolinone derivative. Experimental and Clinical Pharmacology. 2019;82(7):10–13. (In Russ.)] doi: https://doi.org/10.30906/0869-2092-2019-82-7-10-13
Supplementary files
There are no supplementary files to display.
