The Relationship between Inflammation and Hemostasis Disorders in Cardiovascular and Infectious Diseases

Cover Page


Cite item

Full Text

Abstract

Thrombosis and inflammation develop concomitantly during inflammatory, cardiovascular and infectious diseases. Thrombosis induces inflammation and immune system disruption, while inflammation leads to increased hemostasis a vascular thrombosis. Combined use of anti-inflammatory and antithrombotic drugs often leads to adverse effects, for example, nonsteroidal anti-inflammatory drugs induce gastric ulcers, aggravated by bleeding. Vascular endothelial dysfunction plays an important role in the development of thrombosis and inflammation, therefore, research and development of drugs improving endothelial function is a promising approach to preventing thrombotic events arising from inflammation or infectious disease.

Full Text

Введение

Активация системы гемостаза при воспалении (иммунотромбоз) обусловлена взаимодействием иммунных клеток с нейтрофилами, макрофагами, тромбоцитами и эндотелием сосудов и направлена на ограничение распространения воспалительного фактора в организме. Иммунотромбоз при сердечно-сосудистых заболеваниях может сопровождаться разрывом атеросклеротических бляшек, тромбоэмболией легочной артерии, инфарктом миокарда и ишемическим инсультом. При инфекционной патологии тромбоциты презентируют антигены бактерий нейтрофилам и дендритным клеткам, которые активируют все звенья гемостаза. Вирусы стимулируют образование тромбина. Применяемые в настоящее время антитромботические средства недостаточно эффективно препятствуют развитию иммунотромбоза [1–4]. Более перспективно применение средств с противовоспалительной и антитромботической активностью, оказывающих эндотелийпротективное действие.

Тромбоз, вызванный воспалением

Образование тромбов при воспалении сопровождается нарушением кровотока, эндотелиальной дисфункцией и полиорганной недостаточностью. Известно несколько механизмов развития иммунотромбоза.

Нейтрофилы и тромбоциты взаимодействуют с бактериями при участии Toll-подобных, Nod-подобных и лектиновых рецепторов типа C [5]. Тромбоциты фиксируют антигены на мембране и презентируют их нейтрофилам [6]. Нейтрофилы активируются и для уничтожения бактерий образуют нейтрофильную внеклеточную ловушку — фибриллярную структуру, содержащую хроматин, — ядерную ДНК и гистоны. Хроматин связывает миелопероксидазу и эластазу гранул нейтрофилов [7]. Нейтрофильные ловушки активируют фактор Виллебранда, участвующий в адгезии и агрегации тромбоцитов. Для стабилизации тромбоцитарного тромба необходимы гистоны [8]. Эластаза нейтрофилов катализирует протеолиз ингибитора тканевого тромбопластина и усиливает образование тромбина [9]. На отрицательно заряженных молекулах ДНК нейтрофильных ловушек активируется фактор Хагемана [10]. Тромбоциты презентируют антигены дендритным клеткам, которые вызывают опосредованный Т-лимфоцитами адаптивный иммунный ответ [11].

Другой механизм иммунотромбоза заключается в экспрессии гликопротеинового рецептора на мембране нейтрофилов в зоне воспаления. Этот рецептор связывается с P-селектином тромбоцитов. Такое взаимодействие приводит к взаимной активации нейтрофилов и тромбоцитов [12]. У пациентов с сердечно-сосудистыми заболеваниями в крови определяется высокий уровень растворимого Р-селектина, его количество прямо коррелирует с риском инфаркта миокарда, мозгового инсульта и смерти [13].

Помимо прямых межклеточных контактов тромбоциты и нейтрофилы взаимодействуют с помощью растворимых молекул. Активированные нейтрофилы высвобождают везикулы, содержащие арахидоновую кислоту. Тромбоциты поглощают везикулы и синтезируют из арахидоновой кислоты фактор агрегации — тромбоксан А2 [14].

Важным механизмом взаимодействия воспаления и тромбоза является система комплемента [15]. Белки системы комплемента (C1q, C3, С3a, C5a) активируются на мембране тромбоцитов [16].

Макрофаги, разрушенные каспазой-1 (пироптоз), выделяют интерлейкины (ИЛ) — ИЛ-1β и ИЛ-18 и тканевый фактор активации тромбоцитов [17]. Далее тканевый фактор активируется каспазой-11, газодермином, протеин-дисульфид-изомеразой тромбоцитов и поврежденных эндотелиальных клеток [18].

Тромбоциты и нейтрофилы взаимодействуют по принципу обратной связи. Нейтрофилы выделяют антимикробные пептиды кателицидины. Они стимулируют дегрануляцию тромбоцитов и высвобождение провоспалительных медиаторов, таких как амфотерин и ИЛ-1β [19]. Кроме того, кателицидины нейтрофилов активируют моноциты, рецепторы формилпептида-2 эндотелия артерий и вызывают атеросклероз [20].

Таким образом, при воспалении активируются все звенья свертывающей системы крови — тромбоциты, внешний и внутренний пути коагуляционного гемостаза.

Воспаление, вызванное тромбозом

Тромбин активирует ИЛ-1α. Этот цитокин является фактором врожденного иммунитета и выделяется тромбоцитами, макрофагами и кератиноцитами. В костном мозге он усиливает тромбоцитопоэз [21]. Тромбоциты, погибающие при воспалении, быстро, в течение нескольких часов, заменяются на новые клетки. Классический путь продукции тромбоцитов, стимулируемой тромбопоэтином, требует нескольких дней. При воспалении в костном мозге активируются гемопоэтические стволовые клетки, ускоряется их дифференцировка в миелоидные клетки и мегакариоциты [22].

Иммунотромбоз препятствует распространению не только бактерий, но и вирусов [23]. При вирусных заболеваниях повышается выход тромбоцитов и нейтрофилов в микроциркуляторное русло [24]. Тромбоциты активируются после присоединения низкоаффинного рецептора FcγRIIA иммунного комплекса, состоящего из вирусных антигенов и иммуноглобулина G, что становится стимулом к образованию тромбина [25]. При воспалении тромбоциты активируют нейтрофилы с помощью интегринов αIIb и αM, хемокинов CCL5, CXCL4, CXCL5, MIF и серотонина [26]. Активированные нейтрофилы задерживаются в местах тромбоза, количество нейтрофилов увеличено в артериальных и венозных тромбах у пациентов, перенесших инфаркт миокарда или ишемический инсульт [27].

Венозный иммунотромбоз

Венозный иммунотромбоз обусловлен уменьшением скорости кровотока, напряжения сдвига и гиперкоагуляцией [28]. Образование тромба в венах усиливается при воспалении [29]. В зоне воспаления ядерный фактор κB повышает секрецию провоспалительных цитокинов и взаимодействие молекул клеточной адгезии с лейкоцитами [30].

При снижении скорости венозного кровотока и стазе крови усиливаются иммунные реакции вследствие развивающейся гипоксии. В условиях гипоксии активируется фактор 1α, увеличивающий экспрессию Nod-подобного белка инфламмасом NLRP3 в эндотелиальных клетках и секрецию ИЛ-1β [31]. Гистамин тучных клеток стимулирует выделение из эндотелия телец Вейбеля–Паладе, содержащих фактор Виллебранда и P-селектин [32]. Эти молекулы адгезии вызывают хемотаксис тромбоцитов, нейтрофилов и моноцитов [33]. При низкой скорости кровотока нейтрофилы при участии гликопротеинового лиганда P-селектина-1 (PSGL1) и хемокинового рецептора CXCR2 формируют нейтрофильную ловушку [34]. Для ее образования необходим также ядерный негистоновый белок амфотерин. Он взаимодействует с рецепторами расширенного гликозилирования RAGE и Toll-подобными рецепторами типа 2 и 4 и повышает экспрессию моноцитарного тканевого фактора [29]. Амфотерин активирует внешний и внутренний пути коагуляционного гемостаза и вызывает образование стабильного фибринового тромба. Нейтрофильные ловушки разрушаются ДНКазой I типа [35]. Для предотвращения венозных тромбозов перспективно создание лекарственных средств, разрушающих нейтрофильные ловушки и амфотерин.

Таким образом, установлено множество взаимных связей между воспалением и тромбозом, которые ограничивают распространение бактерий и вирусов или способствуют их скорейшей элиминации из организма [36].

Связь воспаления и тромбоза при сердечно-сосудистых заболеваниях

Связь между воспалением и тромбозом подтверждается клиническими данными о высокой частоте развития инфаркта миокарда и ишемического инсульта при системных инфекциях независимо от типа инфицирующего агента [37]. Повышенный риск сердечно-сосудистых заболеваний на фоне инфекций обусловлен активацией иммунитета [38]. Некоторые вирусы могут непосредственно активировать гемостаз [39].

При воспалении белки системы комплемента C3 и С5 активируют тканевый тромбопластин и внешний путь коагуляционного гемостаза [40]. У пациентов с высоким содержанием комплемента C3 в плазме возрастает риск развития тромбоэмболии [41].

Помимо нейтрофилов в развитии иммунотромбоза участвуют эозинофилы. В клинических исследованиях установлено, что при росте количества эозинофилов увеличивается риск тромбоза. Частота тромбозов значительно повышается при синдроме Чарга–Стросса (эозинофильный гранулематоз с полиангиитом) и идиопатическом гиперэозинофильном синдроме [42]. Большое количество эозинофилов находится в тромбах коронарных артерий у пациентов с инфарктом миокарда. Риск тромбоза, вызванного разрушением эндотелия у мышей линии C57BL/6J, снижается при дефиците эозинофилов в крови [43]. Эозинофилы являются источником активированного тканевого тромбопластина и поддерживают агрегацию тромбоцитов с помощью внеклеточных эозинофильных ловушек [43]. При участии арахидонат-12,15-липоксигеназы эозинофилы образуют фосфолипидную поверхность, на которой активируется тромбин. Во взаимной активации эозинофилов и нейтрофилов участвует P-селектин [43].

Связь воспаления и тромбоза при атеросклерозе

В патогенезе атеросклероза участвуют нейтрофилы и эозинофилы. Нейтрофилы поступают в атеросклеротическую бляшку с помощью гликопротеина Ibα и интегрина αIIbβ3, тромбоциты, нейтрофилы и эозинофилы — при участии комплексов GPIbα — фактор Виллебранда и GPVI–коллаген [26]. Лиганд CD40 тромбоцитов, активируя клетки эндотелия, вызывает адгезию моноцитов и нейтрофилов. Ее поддерживают тромбоцитарные хемокины CCL5–CXCL4 [44].

При ишемической болезни сердца содержание катионного белка эозинофилов в плазме положительно коррелирует с выраженностью атеросклероза [45]. У мышей с дефицитом эозинофилов замедляется рост атеросклеротических бляшек и ослабляется адгезия тромбоцитов к эндотелию [43]. Тромбы коронарных артерий и сосудов головного мозга содержат много эозинофилов [46]. В атеросклеротических бляшках повышена экспрессия эозинофильного хемокина эотаксина (CCL11) [47].

Препарат рекомбинантных моноклональных антител к P-селектину инклакумаб снижает повреждение сердца при инфаркте миокарда без подъема сегмента ST [46].

Большую роль в атеротромбозе играет интегрин α9β1 нейтрофилов, при его дефиците ослабляются стимулированное тромбоцитами образование нейтрофильных ловушек, агрегация тромбоцитов, выделение ими катепсина G и частота артериальных тромбозов [49]. Катепсин G поддерживает активацию тромбоцитов и адгезию миелоидных клеток к эндотелию артерий [50]. Кроме того, противомикробный кателицидин LL37/CRAMP нейтрофилов активирует тромбоциты с помощью гликопротеина VI [19]. Активированные тромбоциты при участии амфотерина и иммуноглобулинов RAGE повышают формирование нейтрофильных ловушек [29]. Амфотерин также активирует рецепторы TLR4–MyD88 тромбоцитов, что увеличивает их агрегацию. Ингибирование амфотерина препятствует образованию артериальных тромбов [51].

В дестабилизацию атеросклеротической бляшки вносит вклад дезаминаза аргинина типа 4 нейтрофилов и эозинофилов [52]. Этот фермент стимулирует образование нейтрофильных ловушек. При ингибировании дезаминазы аргинина типа 4 частота атеротромбоза снижается [52]. Нейтрофильные ловушки активируют компоненты системы комплемента, повреждающие эндотелий и активирующие тромбоциты [53]. Соответственно, дефицит комплемента C3 сопровождается уменьшением содержания фактора системы RAS белка RAP1B, что тормозит активацию тромбоцитов [54].

Таким образом, иммунотромбоз является защитным механизмом для сдерживания вторжения и распространения патогенных факторов. Чрезмерная активация иммунотромбоза значительно повышает риск тромботических событий, особенно при сердечно-сосудистых заболеваниях. По этой причине иммунотромбоз является серьезной клинической проблемой, ее решение видится в применении лекарственных средств со сбалансированным противовоспалительным и антитромботическим действием, не вызывающих иммуносупрессию и кровотечения. Некоторые антитромботические средства оказывают противовоспалительное действие [55], в свою очередь, известны противовоспалительные средства с антитромботическими свойствами [56].

В эксперименте на мышах с дефицитом аполипопротеина E антикоагулянт ривароксабан снижал прогрессирование атеросклероза. На модели ишемии-реперфузии миокарда ривароксабан как ингибитор фактора Х свертывания крови уменьшал экспрессии провоспалительных ИЛ-1β, ИЛ-6 и фактора некроза опухоли α [55]. В клинических испытаниях также установлены противовоспалительный и противоатеросклеротический эффекты ривароксабана. У пациентов с суправентрикулярной аритмией ривароксабан снижал концентрацию ИЛ-6 и С-реактивного белка в плазме [57].

В механизмах тромбоза и воспаления участвуют рецепторы, активируемые пролифератором пероксисом (PAR). Они локализованы в тромбоцитах, лейкоцитах, эндотелиальных и гладкомышечных клетках и функционируют после протеолитического расщепления сериновыми протеазами — фактором X и тромбином. При активации рецепторов PAR1 и PAR2 возрастает продукция ИЛ-6 и ИЛ-8, хемокина CCL2 и молекул адгезии в эндотелиальных клетках, что способствует агрегации тромбоцитов, развитию воспаления и образованию атеросклеротических бляшек [58]. У мышей линии Ren-TG с высоким уровнем ренина в плазме ривароксабан уменьшал экспрессию рецепторов PAR2, активированных фактором X, и в результате препятствовал повышению артериального давления [59].

Антиагреганты группы антагонистов пуриновых рецепторов Р2Y12 обладают противовоспалительной активностью [60]. Тикагрелор снижал концентрацию ИЛ-6 и фактора некроза опухоли α в плазме пациентов с сахарным диабетом, перенесших инфаркт миокарда без подъема сегмента ST [61]. Ацетилсалициловая кислота в дозах 75–125 мг/сут ингибирует циклооксигеназу-1 тромбоцитов и снижает синтез провоспалительных простагландинов и тромбоксана А2, уменьшает накопление лейкоцитов в очаге воспаления [62].

У больных в постинфарктном периоде активируются зависимые от ИЛ-1β мобилизация костномозгового кроветворения и дифференцировка в селезенке клеток-предшественников в моноциты [63]. Применение противовоспалительных средств может предотвращать развитие ишемии миокарда [56]. У пациентов с перенесенным инфарктом миокарда и повышенной концентрацией С-реактивного белка в плазме препарат моноклональных антител против ИЛ-1β канакинумаб в комбинации с антиагрегантными и антигипертензивными средствами значительно снижал риск повторного инфаркта. При применении колхицина сразу после развития инфаркта миокарда значительно уменьшался риск повторного инфаркта и мозгового инсульта. Колхицин тормозит образование внеклеточных нейтрофильных ловушек и активацию нейтрофилов, что предотвращает активацию каспазы 1 и синтез ИЛ-1β и ИЛ-18 [64]. Применение колхицина у пациентов с инфарктом миокарда в анамнезе сопровождалось уменьшением концентрации цитозольного Nod-подобного рецептора, ИЛ-18 и активности миелопероксидазы нейтрофилов. У этих больных также становился меньше уровень тромбоцитарного гликопротеина VI, усиливающего вызванную коллагеном активацию и агрегацию тромбоцитов.

Результаты клинических испытаний подтверждают концепцию, что применение противовоспалительных средств может предотвращать развитие инфаркта миокарда и ишемического инсульта.

Многообещающе выглядит коррекция эндотелиальной дисфункции при иммунотромбозе и воспалении. Новый антиагрегант стимулятор растворимой гуанилатциклазы, производное индолинона (шифр — GRS), устранял дисфункцию эндотелия у крыс после экспериментального инфаркта миокарда и ишемического инсульта [65, 66]. Соединение GRS не оказывает прямого противовоспалительного действия, но способно уменьшать последствия воспаления — дисфункцию эндотелия и агрегацию тромбоцитов.

Заключение

В патогенезе сердечно-сосудистых и инфекционных заболеваний участвуют иммунотромбоз и воспаление на фоне тромбоза. Для терапии этих заболеваний перспективно применение лекарственных средств с противовоспалительным и антитромботическим действием. Эти средства не должны вызывать иммуносупрессию и кровотечения. Более безопасным выглядит применение соединений, способных оказывать антиагрегантное действие и снижать эндотелиальную дисфункцию.

Дополнительная информация

Источник финансирования. Работа проведена на бюджетные средства организаций по месту работы авторов.

Конфликт интересов. Авторы данной статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.

Участие авторов. В.В. Быков — анализ источников литературы, формулирование заключение, написание статьи; А.И. Венгеровский — редактирование текста, формулирование заключение, написание статьи; В.В. Удут — проверка и редактирование текста. Все авторы внесли значимый вклад в проведение поисково-аналитической работы и подготовку рукописи, прочли и одобрили финальную версию текста перед публикацией.

×

About the authors

Vladimir V. Bykov

Innovative Pharmacological Research LLC; Siberian State Medical University

Email: vladimir.b.1989@gmail.com
ORCID iD: 0000-0002-5145-2184
SPIN-code: 1202-3719

MD, PhD

Russian Federation, 79/4, Elizarovikh str., 634021, Tomsk; Tomsk

Aleksandr I. Vengerovskii

Siberian State Medical University

Email: pharm-sibgmu@rambler.ru
ORCID iD: 0000-0001-5094-3742
SPIN-code: 8818-0543
ResearcherId: P-8522-2016

MD, PhD, Professor

Russian Federation, Tomsk

Vladimir V. Udut

Goldberg Research Institute of Pharmacology and Regenerative Medicine; Tomsk National Research Medical Center of the Russian Academy of Sciences

Author for correspondence.
Email: udutv@mail.ru
ORCID iD: 0000-0002-3829-7132
SPIN-code: 8645-9815
ResearcherId: A-4208-2017

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, Tomsk

References

  1. Creel-Bulos C, Hockstein M, Amin N, et al. Acute Cor Pulmonale in Critically Ill Patients with COVID-19. N Engl J Med. 2020;382(21):e70. doi: https://doi.org/10.1056/NEJMc2010459
  2. Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424. doi: https://doi.org/10.1111/jth.14830
  3. Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041
  4. Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients with COVID-19: Awareness of an Increased Prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
  5. Hottz ED, Lopes JF, Freitas C, et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood. 2013;122(20):3405–3414. doi: https://doi.org/10.1182/blood-2013-05-504449
  6. Nicolai L, Schiefelbein K, Lipsky S, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun. 2020;11(1):5778. doi: https://doi.org/10.1038/s41467-020-19515-0
  7. von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: https://doi.org/10.1084/jem.20112322
  8. Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–1961. doi: https://doi.org/10.1182/blood-2011-03-343061
  9. Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–896. doi: https://doi.org/10.1038/nm.2184
  10. Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight. Blood. 2019;133(20):2186–2197. doi: https://doi.org/10.1182/blood-2018-10-862243
  11. Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol. 2011;12(12):1194–1201. doi: https://doi.org/10.1038/ni.2140
  12. Sreeramkumar V, Adrover JM, Ballesteros I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346 (6214):1234–1238. doi: https://doi.org/10.1126/science.1256478
  13. Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24(24):2166–2179. doi: https://doi.org/10.1016/j.ehj.2003.08.021
  14. Rossaint J, Kühne K, Skupski J, et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun. 2016;7:13464. doi: https://doi.org/10.1038/ncomms13464
  15. Schmidt CQ, Verschoor A. Complement and coagulation: so close, yet so far. Blood. 2017;130(24):2581–2582. doi: https://doi.org/10.1182/blood-2017-10-811943
  16. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–2175. doi: https://doi.org/10.1016/j.molimm.2010.05.009
  17. Wu C, Lu W, Zhang Y, et al. Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity. 2019;50(6): 1401–1411.e4. doi: https://doi.org/10.1016/j.immuni.2019.04.003
  18. Yang X, Cheng X, Tang Y, et al. Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity. 2019;51(6):983–996.e6. doi: https://doi.org/10.1016/j.immuni.2019.11.005
  19. Pircher J, Czermak T, Ehrlich A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9(1):1523. doi: https://doi.org/10.1038/s41467-018-03925-2
  20. Döring Y, Drechsler M, Wantha S, et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res. 2012;110(8):1052–1056. doi: https://doi.org/10.1161/CIRCRESAHA.112.265868
  21. Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019;50(4):1033–1042.e6. doi: https://doi.org/10.1016/j.immuni.2019.03.003
  22. Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood. 2017;130(15):1693–1698. doi: https://doi.org/10.1182/blood-2017-06-780882
  23. Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol. 2016;7:366. doi: https://doi.org/10.3389/fimmu.2016.00366
  24. Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13(2):169–180. doi: https://doi.org/10.1016/j.chom.2013.01.005
  25. Boilard E, Paré G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood. 2014;123(18):2854–2863. doi: https://doi.org/10.1182/blood-2013-07-515536
  26. Wang Y, Gao H, Shi C, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017;8:15559. doi: https://doi.org/10.1038/ncomms15559
  27. Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37(19):1538–1549. doi: https://doi.org/10.1093/eurheartj/ehv419
  28. Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest. 2012;122(7):2331–2336. doi: https://doi.org/10.1172/JCI60229
  29. Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20): 2435–2449. doi: https://doi.org/10.1182/blood-2016-04-710632
  30. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–387. doi: https://doi.org/10.1152/physrev.00047.2009
  31. Gupta N, Sahu A, Prabhakar A, et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763–4768. doi: https://doi.org/10.1073/pnas.1620458114
  32. Ponomaryov T, Payne H, Fabritz L, et al. Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice. Circ Res. 2017;121(8): 941–950. doi: https://doi.org/10.1161/CIRCRESAHA.117.311185
  33. Subramaniam S, Jurk K, Hobohm L, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–2302. doi: https://doi.org/10.1182/blood-2016-11-749879
  34. Yago T, Liu Z, Ahamed J, McEver RP. Cooperative PSGL- 1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 2018;132(13):1426–1437. doi: https://doi.org/10.1182/blood-2018-05-850859
  35. Brill A, Fuchs TA, Savchenko AS, Thomas GM, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: https://doi.org/10.1111/j.1538-7836.2011.04544.x
  36. Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–1393. doi: https://doi.org/10.1038/nm.2847
  37. Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, et al. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front Immunol. 2019;10:2569. doi: https://doi.org/10.3389/fimmu.2019.02569
  38. Dalager-Pedersen M, Søgaard M, Schønheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation. 2014; 129(13):1387–1396. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.006699
  39. Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021; 76(4):412–420. doi: https://doi.org/10.1136/thoraxjnl-2020-216243
  40. Landsem A, Fure H, Christiansen D, et al. The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin Exp Immunol. 2015;182(1):81–89. doi: https://doi.org/10.1111/cei.12663
  41. Nørgaard I, Nielsen SF, Nordestgaard BG. Complement C3 and High Risk of Venous Thromboembolism: 80517 Individuals from the Copenhagen General Population Study. Clin Chem. 2016;62(3):525–534. doi: https://doi.org/10.1373/clinchem.2015.251314
  42. Gao SJ, Wei W, Chen JT, et al. Hypereosinophilic syndrome presenting with multiple organ infiltration and deep venous thrombosis: A case report and literature review. Medicine (Baltimore). 2016;95(35):e4658. doi: https://doi.org/10.1097/MD.0000000000004658
  43. Marx C, Novotny J, Salbeck D, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134(21):1859–1872. doi: https://doi.org/10.1182/blood.2019000518
  44. Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236–240. doi: https://doi.org/10.1038/s41586-019-1167-6
  45. Xia GL, Wang YK, Huang ZQ. The Correlation of Serum Myeloid-Related Protein-8/14 and Eosinophil Cationic Protein in Patients with Coronary Artery Disease. Biomed Res Int. 2016;2016:4980251. doi: https://doi.org/10.1155/2016/4980251
  46. Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. doi: https://doi.org/10.1212/WNL.0000000000009532
  47. Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512. doi: https://doi.org/10.1002/path.5212
  48. Tardif JC, Tanguay JF, Wright SR, et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61(20):2048–2055. doi: https://doi.org/10.1016/j.jacc.2013.03.003
  49. Dhanesha N, Nayak MK, Doddapattar P, et al. Targeting myeloid-cell specific integrin α9β1 inhibits arterial thrombosis in mice. Blood. 2020;135(11):857–861. doi: https://doi.org/10.1182/blood.2019002846
  50. Ortega-Gomez A, Salvermoser M, Rossaint J, et al. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation. 2016;134(16):1176–1188. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.024790
  51. Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638–4654. doi: https://doi.org/10.1172/JCI81660
  52. Franck G, Mawson TL, Folco EJ, et al. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion. Circ Res. 2018;123(1):33–42. doi: https://doi.org/10.1161/CIRCRESAHA.117.312494
  53. Schreiber A, Rousselle A, Becker JU, et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci USA. 2017;114(45):E9618–E9625. doi: https://doi.org/10.1073/pnas.1708247114
  54. Sauter RJ, Sauter M, Reis ES, Emschermann FN, et al. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation. 2018;138(16):1720–1735. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.034600
  55. Gadi I, Fatima S, Elwakiel A, et al. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res. 2021;128(4):513–529. doi: https://doi.org/10.1161/CIRCRESAHA.120.317219
  56. Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838–1847. doi: https://doi.org/10.1056/NEJMoa2021372
  57. Kirchhof P, Ezekowitz MD, Purmah Y, et al. Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial. TH Open. 2020;4(1):e20–e32. doi: https://doi.org/10.1055/s-0040-1701206
  58. Busch G, Seitz I, Steppich B, et al. Coagulation factor Xa stimulates interleukin-8 release in endothelial cells and mononuclear leukocytes: implications in acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25(2):461–466. doi: https://doi.org/10.1161/01.ATV.0000151279.35780.2d
  59. Ichikawa H, Shimada M, Narita M, et al. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc. 2019;8(8):e012195. doi: https://doi.org/10.1161/JAHA.119.012195
  60. Mansour A, Bachelot-Loza C, Nesseler N, et al. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci. 2020;21(4):1391. doi: https://doi.org/10.3390/ijms21041391
  61. Jeong HS, Hong SJ, Cho SA, et al. Comparison of Ticagrelor Versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting: A Prospective, Randomized, Crossover Trial. JACC Cardiovasc Interv. 2017;10(16):1646–1658. doi: https://doi.org/10.1016/j.jcin.2017.05.064
  62. Morris T, Stables M, Hobbs A, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183(3):2089–2096. doi: https://doi.org/10.4049/jimmunol.0900477
  63. Sager HB, Heidt T, Hulsmans M, et al. Targeting Interleukin-1β Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation. 2015;132(20):1880–1890. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.016160
  64. Opstal TSJ, Hoogeveen RM, Fiolet ATL, et al. Colchicine Attenuates Inflammation Beyond the Inflammasome in Chronic Coronary Artery Disease: A LoDoCo2 Proteomic Substudy. Circulation. 2020;142(20):1996–1998. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.05056
  65. Bykov VV, Smol’yakova VI, Chernysheva GA, et al. Effects of a New Antithrombotic Drug GRS, a Soluble Guanylate Cyclase Stimulator, on Endothelial Dysfunction in Rats with Myocardial Infarction. Bull Exp Biol Med. 2022;172(6):709–712. doi: https://doi.org/10.1007/s10517-022-05461-y
  66. Быков В.В., Чернышева Г.А., Смольякова В.И., и др. Антиагрегантная активность нового производного индолинона // Экспериментальная и клиническая фармакология. — 2019. — Т. 82. — № 7. — С. 10–13. [Bykov VV, Chernysheva GA, Smolyakova VI, et al. Antiplatelet activity of a new indolinone derivative. Experimental and Clinical Pharmacology. 2019;82(7):10–13. (In Russ.)] doi: https://doi.org/10.30906/0869-2092-2019-82-7-10-13

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies