Omics technologies in screening for kidney disease in children with congenital uropathy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Primary vesicoureteral reflux (VUR) is the most common congenital uropathy (CU) in children, leading to the development of reflux nephropathy and chronic kidney disease, reaching the terminal stage in 25-60% of patients. The insufficient sensitivity of modern methods of instrumental and laboratory diagnostics of the initial stages of renal parenchyma damage dictates the need to develop new non-invasive technologies for screening and monitoring kidney conditions in patients with CU.

Aims: To evaluate the possibility of separating groups of healthy children and children with kidney damage with CU using the analysis of the mass spectra of volatile organic compounds (VOCs) in urine samples.

Materials and methods: This study involved 42 patients (average age 5.4 + 2.3 years), divided into 2 groups: group 1 – 24 children with congenital uropathies (grade II-V PMR) and comparison group 2 - 18 patients with minor surgical pathology without pathology of the urinary system. Urine samples were collected  before the start of treatment.  Composition  analysis of VOCs samples was carried out through express-analysis method for biological objects at atmospheric pressure without preliminary preparation using a mass spectrometer with ionization by laser plasma radiation. Urinary levels of markers of inflammation (MCP-1, IL-8, IL-18), angiogenesis (VEGF) and fibrosis (TGF-β1) were measured by solid-phase ELISA.

Results: Composition changes in urine VOCs were detected in group 1 patients with congenital uropathies (VUR). These changes made it possible to distinguish group 1 samples from the comparison group 2. Creatinine level and glomerular filtration rate (GFR) in both groups had no statistical difference. An increase in concentration of inflammatory markers MCP-1, IL-18, IL-8, VEGF angiogenesis and TGF-β1 fibrosis was observed in the urine of children with congenital uropathies (VUR) (p<0.001). In group 1 patients the concentration of markers did not correlate with the reflux level.

Conclusions: The  performed research allowed  to find a set of peaks in the recorded mass spectra, according to which it is possible to divide groups into healthy and sick. It also demonstrated the potential of volatolom analysis to detect kidney damage in children with congenital uropathies. The use of standard methods: creatinine and GFR did not allow us to find a threshold value to divide patient into healthy and sick groups. The increase of biomarkers of inflammation, angiogenesis and fibrosis in the urine of children with congenital uropathies confirmed the presence of persistent kidney damage, parenchymal hypoxia, activation of fibrosis and inflammation in children with CU kidneys.

Full Text

Restricted Access

About the authors

Aygul B. Bukharina

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ay15@mail.ru
ORCID iD: 0000-0003-3627-3302
SPIN-code: 3189-1112
Russian Federation, Moscow

Anastasia O. Fedulkina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: n.fedulkina@mail.ru
ORCID iD: 0000-0002-6232-2123

Student

Russian Federation, Moscow

Karmina N. Demidova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: negmatova.karmina@mail.ru
ORCID iD: 0000-0002-4638-6370
SPIN-code: 9281-4273
Russian Federation, Moscow

Andrei V. Pento

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pentan@mail.ru
ORCID iD: 0000-0001-5122-8265
SPIN-code: 6035-3748

PhD in Physical and Mathematical Sciences

Russian Federation, Moscow

Larisa D. Maltseva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: lamapost@mail.ru
ORCID iD: 0000-0002-4380-4522
SPIN-code: 7725-2499

PhD, Assistant Professor

Russian Federation, Moscow

Yaroslav O. Simanovsky

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: yaroslav@kapella.gpi.ru
ORCID iD: 0000-0003-0779-1135
SPIN-code: 3438-9329

PhD in Technical Sciences

Russian Federation, Moscow

Sergei M. Nikiforov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: 15925@mail.ru
ORCID iD: 0000-0001-7510-4355
SPIN-code: 9359-0557

PhD in Physical and Mathematical Sciences

Russian Federation, Moscow

Olga L. Morozova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: morozova_ol@list.ru
ORCID iD: 0000-0003-2453-1319
SPIN-code: 1567-4113
Scopus Author ID: 55805379800
ResearcherId: R-9125-2017

MD, PhD, Professor

Russian Federation, Moscow

References

  1. Morris AP, Le TH, Wu H, et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat Commun. 2019;10(1):29. doi: https://doi.org/10.1038/s41467-018-07867-7
  2. Macioszek S, Wawrzyniak R, Kranz A, et al. Comprehensive Metabolic Signature of Renal Dysplasia in Children. A Multiplatform Metabolomics Concept. Front Mol Biosci. 2021;8:665661. doi: https://doi.org/10.3389/fmolb.2021.665661
  3. Hajiyev P, Burgu B. Contemporary Management of Vesicoureteral Reflux. Eur Urol Focus. 2017;3(2–3):181–188. doi: https://doi.org/10.1016/j.euf.2017.08.012
  4. Fillion ML, Watt CL, Gupta IR. Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr Nephrol. 2014;29(4):757–766. doi: https://doi.org/10.1007/s00467-014-2761-3
  5. Chertin B, Abu Arafeh W, Kocherov S. Endoscopic correction of complex cases of vesicoureteral reflux utilizing Vantris as a new non-biodegradable tissue-augmenting substance. Pediatr Surg Int. 2014;30(4):445–448. doi: https://doi.org/10.1007/s00383-014-3468-z
  6. Nickolas TL, Barasch J, Devarajan P. Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17(2):127–132. doi: https://doi.org/10.1097/MNH.0b013e3282f4e525
  7. Хворостов И.Н., Смирнов И.Е., Кучеренко А.Г., и др. Нефросцинтиграфия и цитокины в диагностике поражений почек при пузырно-мочеточниковом рефлюксе у детей // Российский педиатрический журнал. — 2013. — № 2. — С. 20–26. [Khvorostov IN, Smirnov IE, Kucherenko AG, et al. Nephroscintigraphy and cytokines in the diagnosis of kidney lesions in vesico-ureteral reflux in children. Russian Pediatric Journal. 2013;2:20–26. (In Russ.)]
  8. Zhang WR, Parikh CR. Biomarkers of Acute and Chronic Kidney Disease. Annu Rev Physiol. 2019;81:309–333. doi: https://doi.org/10.1146/annurev-physiol-020518-114605
  9. Drabińska N, Flynn C, Ratcliffe N, et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res. 2021;15(3). doi: https://doi.org/10.1088/1752-7163/abf1d0
  10. Krzemień G, Szmigielska A, Turczyn A, et al. Urine interleukin-6, interleukin-8 and transforming growth factor β1 in infants with urinary tract infection and asymptomatic bacteriuria. Cent Eur J Immunol. 2016;41(3):260–267. doi: https://doi.org/10.5114/ceji.2016.63125
  11. Konda R, Sato H, Sakai K, et al. Urinary excretion of vascular endothelial growth factor is increased in children with reflux nephropathy. Nephron Clin Pract. 2004;98(3):c73–78. doi: https://doi.org/10.1159/000080676
  12. De Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1):014001. doi: https://doi.org/10.1088/1752-7155/8/1/014001
  13. Datta S, Depadilla L. Feature selection and machine learning with mass spectrometry data for distinguishing cancer and non-cancer samples. Statistical Methodology. 2006;3(1):79–92. doi: https://doi.org/10.1016/j.stamet.2005.09.006
  14. Zoccali M, Tranchida PQ, Mondello L. Fast gas chromatography-mass spectrometry: A review of the last decade. TrAC Trends in Analytical Chemistry. 2019;118:444–452. doi: https://doi.org/10.1016/j.trac.2019.06.006
  15. Лисица А.В., Пономаренко Е.А., Лохов П.Г., и др. Постгеномная медицина: альтернатива биомаркерам // Вестник РАМН. — 2016. — Т. 71. — № 3. — С. 255–260. [Lisitsa AV, Ponomarenko EA, Lokhov PG, et al. Postgenomic Medicine: Alternative to Biomarkers. Annals of the Russian Academy of Medical Sciences. 2016;71(3):255–260. (In Russ.)] doi: https://doi.org/10.15690/vramn647
  16. Pento AV, Nikiforov SM, Simanovsky YO, et al. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds. Quantum Electronics. 2013;43(1):55–59. doi: https://doi.org/10.1070/QE2013v043n01ABEH015065
  17. Pento AV, Bukharina AB, Nikiforov SM, et al. Laser-induced plasma on a metal surface for ionization of organic compounds at atmospheric pressure. International Journal of Mass Spectrometry. 2021;461:116498. doi: https://doi.org/10.1016/j.ijms.2020.116498
  18. Smith D, Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev. 2005;24(5):661–700. doi: https://doi.org/10.1002/mas.20033
  19. Krzemień G, Szmigielska A, Turczyn A, et al. Urine interleukin-6, interleukin-8 and transforming growth factor β1 in infants with urinary tract infection and asymptomatic bacteriuria. Cent Eur J Immunol. 2016;41(3):260–267. doi: https://doi.org/10.5114/ceji.2016.63125
  20. Elner SG, Strieter RM, Elner VM, et al. Monocyte chemotactic protein gene expression by cytokine-treated human retinal pigment epithelial cells. Lab Invest. 1991;64(6):819–825.
  21. Kiyici S, Erturk E, Budak F, et al. Serum monocyte chemoattractant protein-1 and monocyte adhesion molecules in type 1 diabetic patients with nephropathy. Arch Med Res. 2006;37(8):998–1003. doi: https://doi.org/10.1016/j.arcmed.2006.06.002
  22. Gültekin ND, Benzer M, Tekin-Neijmann Ş. Is there any relation between connective tissue growth factor and scar tissue in vesicoureteral reflux? Turk J Pediatr. 2019;61(1):71–78. doi: https://doi.org/10.24953/turkjped.2019.01.011
  23. Eliuk S, Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu Rev Anal Chem (Palo Alto Calif). 2015;8:61–80. doi: https://doi.org/10.1146/annurev-anchem-071114-040325
  24. Boring L, Gosling J, Chensue SW, et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest. 1997;100(10):2552–2561. doi: https://doi.org/10.1172/JCI119798
  25. Dimke H, Sparks MA, Thomson BR, et al. Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J Am Soc Nephrol. 2015;26(5):1027–1038. doi: https://doi.org/10.1681/ASN.2014010060
  26. Morozova O, Morozov D, Pervouchine D, et al. Urinary biomarkers of latent inflammation and fibrosis in children with vesicoureteral reflux. Int Urol Nephrol. 2020;52(4):603–610. doi: https://doi.org/10.1007/s11255-019-02357-1
  27. Wu C-F, Chiang W-C, Lai C-F, et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol. 2013;182(1):118–131. doi: https://doi.org/10.1016/j.ajpath.2012.09.009
  28. Gültekin ND, Benzer M, Tekin-Neijmann Ş. Is there any relation between connective tissue growth factor and scar tissue in vesicoureteral reflux? Turk J Pediatr. 2019;61(1):71–78. doi: https://doi.org/10.24953/turkjped.2019.01.011
  29. Tokarchuk N, Vyzhga Y, Tokarchuk V, et al. [FIBROTIC MARKERS IN INFANTS WITH PYELONEPHRITIS]. Georgian Med News. 2019;(288):44–48.

Supplementary files

Supplementary Files
Action
1. Figure 1. Scheme of a mass spectrometer with a VOC input device: 1 - reflectron time-of-flight mass spectrometer; 2 - laser plasma created by pulsed laser radiation; 3 - metal target; 4 - pulsed Nd:YAG laser; 5 - lens with a focal length of 5 cm; 6 - ionization chamber; 7 - a test tube with a urine sample installed on the pneumatic connector

Download (56KB)
2. Figure 2. Dependence of the total ion current on time in the study of urine samples: 1 — area of air displacement in the test tube by argon, duration ~ 30 s (shaded in blue); 2 — recording section of a stable mass spectrum, duration ~ 120 s (shaded red) and when an empty tube is installed (unshaded area). The inset shows a single mass spectrum of a urine sample.

Download (87KB)
3. Figure 3. The result of applying the principal component method to the analysis of mass spectra of VOCs in the urine of patients (blue dots) and healthy (red dots)

Download (78KB)
4. Figure 4. Comparison of the results of the mass spectrometric analysis of VOC and the test for creatinine and GFR: A - comparison with the test for creatinine; B - comparison with GFR test

Download (163KB)

Copyright (c) 2022 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies