Invasive Brain–Computer Interfaces: 25 Years of Clinical Trials, Scientific and Practical Issues
- Authors: Mokienko O.A.1,2,3
-
Affiliations:
- Institute of Higher Nervous Activity and Neurophysiology of the RAS
- Pirogov Russian National Research Medical University (Pirogov Medical University)
- Research Center of Neurology
- Issue: Vol 79, No 5 (2024)
- Pages: 424–431
- Section: NEUROLOGY AND NEUROSURGERY: CURRENT ISSUES
- Published: 14.01.2025
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/17994
- DOI: https://doi.org/10.15690/vramn17994
- ID: 17994
Cite item
Abstract
A brain-computer interface (BCI) is a system that measures brain activity and converts it in real-time into functionally useful outputs to replace, restore, enhance, supplement, and/or improve the natural outputs of the brain. In invasive BCIs, electrodes are placed intracranially for more accurate and faster data exchange between the brain and external devices. The primary medical objective of these technologies is to compensate for motor or speech function in patients with tetraparesis and anarthria. In recent years, the emergence of new neuroimplants for BCIs and the results demonstrated in clinical trials have led to a notable increase in interest in these systems from the scientific community, investors, and the public. This review compares different types of medical invasive BCIs, analyzes and discusses the achievements and unsolved problems of clinical application of these neurotechnologies, as well as possible consequences and risks of their wider use.
Full Text
About the authors
Olesya A. Mokienko
Institute of Higher Nervous Activity and Neurophysiology of the RAS; Pirogov Russian National Research Medical University (Pirogov Medical University); Research Center of Neurology
Author for correspondence.
Email: Lesya.md@yandex.ru
ORCID iD: 0000-0002-7826-5135
SPIN-code: 8088-9921
MD, PhD, Senior Researcher
Россия, Moscow; Moscow; MoscowReferences
- BCIsociety.org/bci-definition/ [Internet]. BCI Definition. Available from: https://bcisociety.org/bci-definition (accessed: 30.05.2014).
- Karikari E, Koshechkin KA. Review on brain–computer interface technologies in healthcare. Biophys Rev. 2023;15(5):1351–1358. doi: https://doi.org/10.1007/s12551-023-01138-6
- Mokienko OA, Lyukmanov RKh, Bobrov PD, et al. Brain–computer interfaces for upper limb motor recovery after stroke: current status and development prospects (review). Sovremennye tehnologii v medicine. 2023;15(6):63–74. doi: https://doi.org/10.17691/stm2023.15.6.07
- Mokienko OA. Brain–computer interfaces with intracortical implants for motor and communication functions compensation: review of recent developments. Sovremennye tehnologii v medicine. 2024;16(1):78–89. doi: https://doi.org/10.17691/stm2024.16.1.08
- Mitchell P, Lee SCM, Yoo PE, et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the stentrode with thought-controlled digital switch (switch) study. JAMA Neurol. 2023;80(3):270–278. doi: https://doi.org/10.1001/jamaneurol.2022.4847
- Drew L. The rise of brain-reading technology: what you need to know. Nature. 2023;623(7986):241–243. doi: https://doi.org/10.1038/d41586-023-03423-6
- Eisenstein M. Seven technologies to watch in 2024. Nature. 2024;625(7996):844–848. doi: https://doi.org/10.1038/d41586-024-00173-x
- Moses DA, Metzger SL, Liu JR, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N Engl J Med. 2021;385(3):217–227. doi: https://doi.org/10.1056/NEJMoa2027540
- Wandelt SK, Bjånes DA, Pejsa K, et al. Representation of internal speech by single neurons in human supramarginal gyrus. Nat Hum Behav. 2024;8(6):1136–1149. doi: https://doi.org/10.1038/s41562-024-01867-y
- Willett FR, Avansino DT, Hochberg LR, et al. High-performance brain-to-text communication via handwriting. Nature. 2021;593(7858):249–254. doi: https://doi.org/10.1038/s41586-021-03506-2
- Wandelt SK, Kellis S, Bjånes DA, et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron. 2022;110(11):1777–1787.e3. doi: https://doi.org/10.1016/j.neuron.2022.03.009
- Bergeron D, Iorio-Morin C, Bonizzato M, et al. Use of invasive brain–computer interfaces in pediatric neurosurgery: technical and ethical considerations. J Child Neurol. 2023;38(3–4):223–238. doi: https://doi.org/10.1177/08830738231167736
- Zhang Z, Chen Y, Zhao X, et al. [Ethical considerations for medical applications of implantable brain–computer interfaces]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024;41(1):177–183. doi: https://doi.org/10.7507/1001-5515.202309083
- Soldado-Magraner J, Antonietti A, French J, et al. Applying the ieee brain neuroethics framework to intra-cortical brain–computer interfaces. J Neural Eng. 2024;21(2). doi: https://doi.org/10.1088/1741-2552/ad3852
- Valeriani D, Santoro F, Ienca M. The present and future of neural interfaces. Front Neurorobot. 2022;16:953968. doi: https://doi.org/10.3389/fnbot.2022.953968
- Guenther FH, Brumberg JS, Wright EJ, et al. A wireless brain–machine interface for real-time speech synthesis. PLoS One. 2009;4(12):e8218. doi: https://doi.org/10.1371/journal.pone.0008218
- Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH. Brain–computer interfaces for speech communication. Speech Commun. 2010;52(4):367–379. doi: https://doi.org/10.1016/j.specom.2010.01.001
- Kennedy PR, Kirby MT, Moore MM, et al. Computer control using human intracortical local field potentials. IEEE Trans Neural Syst Rehabil Eng. 2004;12(3):339–344. doi: https://doi.org/10.1109/TNSRE.2004.834629
- Kennedy PR, Bakay RA, Moore MM, et al. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8(2):198–202. doi: https://doi.org/10.1109/86.847815
- Flesher SN, Downey JE, Weiss JM, et al. A brain–computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831–836. doi: https://doi.org/10.1126/science.abd0380
- Shah NP, Willsey MS, Hahn N, et al. A brain-computer typing interface using finger movements. Int IEEE EMBS Conf Neural Eng. 2023;2023:10.1109/ner52421.2023.10123912. doi: https://doi.org/10.1109/ner52421.2023.10123912
- Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171. doi: https://doi.org/10.1038/nature04970
- Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–375. doi: https://doi.org/10.1038/nature11076
- Downey JE, Brane L, Gaunt RA, et al. Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci Rep. 2017;7(1):16947. doi: https://doi.org/10.1038/s41598-017-17222-3
- Aflalo T, Kellis S, Klaes C, et al. Neurophysiology. decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015;348(6237):906–910. doi: https://doi.org/10.1126/science.aaa5417
- Handelman DA, Osborn LE, Thomas TM, et al. Shared control of bimanual robotic limbs with a brain–machine interface for self-feeding. Front Neurorobot. 2022;16:918001. doi: https://doi.org/10.3389/fnbot.2022.918001
- Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247–250. doi: https://doi.org/10.1038/nature17435
- Ajiboye AB, Willett FR, Young DR, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–1830. doi: https://doi.org/10.1016/S0140-6736(17)30601-3
- Pandarinath C, Nuyujukian P, Blabe CH, et al. High performance communication by people with paralysis using an intracortical brain–computer interface. Elife. 2017;6:e18554. doi: https://doi.org/10.7554/eLife.18554
- Nuyujukian P, Albites Sanabria J, Saab J, et al. Cortical control of a tablet computer by people with paralysis. PLoS One. 2018;13(11):e0204566. doi: https://doi.org/10.1371/journal.pone.0204566
- Simeral JD, Hosman T, Saab J, et al. Home use of a percutaneous wireless intracortical brain–computer interface by individuals with tetraplegia. IEEE Trans Biomed Eng. 2021;68(7):2313–2325. doi: https://doi.org/10.1109/TBME.2021.3069119
- Jarosiewicz B, Sarma AA, Bacher D, et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci Transl Med. 2015;7(313):313ra179. doi: https://doi.org/10.1126/scitranslmed.aac7328
- Bacher D, Jarosiewicz B, Masse NY, et al. Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabil Neural Repair. 2015;29(5):462–471. doi: https://doi.org/10.1177/1545968314554624
- Chaudhary U, Vlachos I, Zimmermann JB, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat Commun. 2022;13(1):1236. doi: https://doi.org/10.1038/s41467-022-28859-8
- Willett FR, Kunz EM, Fan C, et al. A high-performance speech neuroprosthesis. Nature. 2023;620(7976):1031–1036. doi: https://doi.org/10.1038/s41586-023-06377-x
- Gilja V, Pandarinath C, Blabe CH, et al. Clinical translation of a high-performance neural prosthesis. Nat Med. 2015;21(10):1142–1145. doi: https://doi.org/10.1038/nm.3953
- Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–564. doi: https://doi.org/10.1016/S0140-6736(12)61816-9
- Wodlinger B, Downey JE, Tyler-Kabara EC, et al. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J Neural Eng. 2015;12(1):016011. doi: https://doi.org/10.1088/1741-2560/12/1/016011
- Chadwick EK, Blana D, Simeral JD, et al. Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. J Neural Eng. 2011;8(3):034003. doi: https://doi.org/10.1088/1741-2560/8/3/034003
- Moly A, Costecalde T, Martel F, et al. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. J Neural Eng. 2022;19(2):026021. doi: https://doi.org/10.1088/1741-2552/ac59a0
- Wang W, Collinger JL, Degenhart AD, et al. An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 2013;8(2):e55344. doi: https://doi.org/10.1371/journal.pone.0055344
- Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112–1122. doi: https://doi.org/10.1016/S1474-4422(19)30321-7
- Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375(21):2060–2066. doi: https://doi.org/10.1056/NEJMoa1608085
- Davis KC, Meschede-Krasa B, Cajigas I, et al. Design-development of an at-home modular brain–computer interface (BCI) platform in a case study of cervical spinal cord injury. J Neuroeng Rehabil. 2022;19(1):53. doi: https://doi.org/10.1186/s12984-022-01026-2
- Metzger SL, Littlejohn KT, Silva AB, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature. 2023;620(7976):1037–1046. doi: https://doi.org/10.1038/s41586-023-06443-4
- Pels EGM, Aarnoutse EJ, Leinders S, et al. Stability of a chronic implanted brain–computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 2019;130(10):1798–1803. doi: https://doi.org/10.1016/j.clinph.2019.07.020
- Cajigas I, Davis KC, Meschede-Krasa B, et al. Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun. 2021;3(4):fcab248. doi: https://doi.org/10.1093/braincomms/fcab248
- Angrick M, Luo S, Rabbani Q, et al. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS. Sci Rep. 2024;14(1):9617. doi: https://doi.org/10.1038/s41598-024-60277-2
- Luo S, Angrick M, Coogan C, et al. Stable decoding from a speech BCI enables control for an individual with ALS without recalibration for 3 months. Adv Sci (Weinh). 2023;10(35):e2304853. doi: https://doi.org/10.1002/advs.202304853
- Oxley TJ, Yoo PE, Rind GS, et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J Neurointerv Surg. 2021;13(2):102–108. doi: https://doi.org/10.1136/neurintsurg-2020-016862
- Brannigan JFM, Fry A, Opie NL, et al. Endovascular brain–computer interfaces in poststroke paralysis. Stroke. 2024;55(2):474–483. doi: https://doi.org/10.1161/STROKEAHA.123.037719
- Ho E, Hettick M, Papageorgiou D, et al. The layer 7 cortical interface: a scalable and minimally invasive brain–computer interface platform. bioRxiv. 2022; doi: https://doi.org/10.1101/2022.01.02.474656
- Jung T, Zeng N, Fabbri JD, et al. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain–computer interface device. bioRxiv. 2024;2024.05.17.594333. doi: https://doi.org/10.1101/2024.05.17.594333
- Donoghue JP, Nurmikko A, Black M, et al. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol. 2007;579(Pt 3):603–611. doi: https://doi.org/10.1113/jphysiol.2006.127209
- Rubin DB, Ajiboye AB, Barefoot L, et al. Interim safety profile from the feasibility study of the braingate neural interface system. Neurology. 2023;100(11):e1177–е1192. doi: https://doi.org/10.1212/WNL.0000000000201707
- Clinicaltrials.gov/study/NCT06429735 [Internet]. Study Details. Available from: https://clinicaltrials.gov/study/NCT06429735 (accessed: 30.05.2024).
- Rainey S, Maslen H, Savulescu J. When thinking is doing: responsibility for BCI-mediated action. AJOB Neurosci. 2020;11(1):46–58. doi: https://doi.org/10.1080/21507740.2019.1704918
- Petrosyan A, Voskoboinikov A, Sukhinin D, et al. Speech decoding from a small set of spatially segregated minimally invasive intracranial EEG electrodes with a compact and interpretable neural network. J Neural Eng. 2022;19(6). doi: https://doi.org/10.1088/1741-2552/aca1e1
- Valle G, Katic Secerovic N, Eggemann D, et al. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun. 2024;15(1):1151. doi: https://doi.org/10.1038/s41467-024-45190-6
- Soghoyan G, Biktimirov A, Matvienko Y, et al. Peripheral nerve stimulation enables somatosensory feedback while suppressing phantom limb pain in transradial amputees. Brain Stimul. 2023;16(3):756–758. doi: https://doi.org/10.1016/j.brs.2023.04.017