Инвазивные интерфейсы мозг–компьютер: 25 лет клинических испытаний, научные и практические вопросы

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Интерфейс мозг–компьютер (ИМК) — это система, которая измеряет активность головного мозга и преобразует ее в режиме реального времени в функционально полезные выходные данные для замены, восстановления, усиления, дополнения и/или улучшения естественных выходных данных мозга. В инвазивных ИМК для более точного и быстрого информационного обмена между мозгом и внешними устройствами электроды размещаются интракраниально. Основное медицинское назначение данных технологий — компенсация двигательной или речевой функции у пациентов с тетрапарезом и анартрией. В последние годы на фоне появления новых типов нейроимплантатов для ИМК и результатов, продемонстрированных в клинических исследованиях, к данным системам существенно возрос интерес со стороны научного сообщества, инвесторов и общественности. Данный обзор посвящен анализу и обсуждению достижений и нерешенных проблем клинического применения технологий инвазивных ИМК, а также анализу возможных последствий и рисков более широкого использования данных нейротехнологий.

Полный текст

Доступ закрыт

Об авторах

Олеся А. Мокиенко

Институт высшей нервной деятельности и нейрофизиологии РАН; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова; Научный центр неврологии

Автор, ответственный за переписку.
Email: Lesya.md@yandex.ru
ORCID iD: 0000-0002-7826-5135
SPIN-код: 8088-9921

к.м.н., старший научный сотрудн

Россия, Москва; Москва; Москва

Список литературы

  1. BCIsociety.org/bci-definition/ [Internet]. BCI Definition. Available from: https://bcisociety.org/bci-definition (accessed: 30.05.2014).
  2. Karikari E, Koshechkin KA. Review on brain–computer interface technologies in healthcare. Biophys Rev. 2023;15(5):1351–1358. doi: https://doi.org/10.1007/s12551-023-01138-6
  3. Mokienko OA, Lyukmanov RKh, Bobrov PD, et al. Brain–computer interfaces for upper limb motor recovery after stroke: current status and development prospects (review). Sovremennye tehnologii v medicine. 2023;15(6):63–74. doi: https://doi.org/10.17691/stm2023.15.6.07
  4. Mokienko OA. Brain–computer interfaces with intracortical implants for motor and communication functions compensation: review of recent developments. Sovremennye tehnologii v medicine. 2024;16(1):78–89. doi: https://doi.org/10.17691/stm2024.16.1.08
  5. Mitchell P, Lee SCM, Yoo PE, et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the stentrode with thought-controlled digital switch (switch) study. JAMA Neurol. 2023;80(3):270–278. doi: https://doi.org/10.1001/jamaneurol.2022.4847
  6. Drew L. The rise of brain-reading technology: what you need to know. Nature. 2023;623(7986):241–243. doi: https://doi.org/10.1038/d41586-023-03423-6
  7. Eisenstein M. Seven technologies to watch in 2024. Nature. 2024;625(7996):844–848. doi: https://doi.org/10.1038/d41586-024-00173-x
  8. Moses DA, Metzger SL, Liu JR, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N Engl J Med. 2021;385(3):217–227. doi: https://doi.org/10.1056/NEJMoa2027540
  9. Wandelt SK, Bjånes DA, Pejsa K, et al. Representation of internal speech by single neurons in human supramarginal gyrus. Nat Hum Behav. 2024;8(6):1136–1149. doi: https://doi.org/10.1038/s41562-024-01867-y
  10. Willett FR, Avansino DT, Hochberg LR, et al. High-performance brain-to-text communication via handwriting. Nature. 2021;593(7858):249–254. doi: https://doi.org/10.1038/s41586-021-03506-2
  11. Wandelt SK, Kellis S, Bjånes DA, et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron. 2022;110(11):1777–1787.e3. doi: https://doi.org/10.1016/j.neuron.2022.03.009
  12. Bergeron D, Iorio-Morin C, Bonizzato M, et al. Use of invasive brain–computer interfaces in pediatric neurosurgery: technical and ethical considerations. J Child Neurol. 2023;38(3–4):223–238. doi: https://doi.org/10.1177/08830738231167736
  13. Zhang Z, Chen Y, Zhao X, et al. [Ethical considerations for medical applications of implantable brain–computer interfaces]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024;41(1):177–183. doi: https://doi.org/10.7507/1001-5515.202309083
  14. Soldado-Magraner J, Antonietti A, French J, et al. Applying the ieee brain neuroethics framework to intra-cortical brain–computer interfaces. J Neural Eng. 2024;21(2). doi: https://doi.org/10.1088/1741-2552/ad3852
  15. Valeriani D, Santoro F, Ienca M. The present and future of neural interfaces. Front Neurorobot. 2022;16:953968. doi: https://doi.org/10.3389/fnbot.2022.953968
  16. Guenther FH, Brumberg JS, Wright EJ, et al. A wireless brain–machine interface for real-time speech synthesis. PLoS One. 2009;4(12):e8218. doi: https://doi.org/10.1371/journal.pone.0008218
  17. Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH. Brain–computer interfaces for speech communication. Speech Commun. 2010;52(4):367–379. doi: https://doi.org/10.1016/j.specom.2010.01.001
  18. Kennedy PR, Kirby MT, Moore MM, et al. Computer control using human intracortical local field potentials. IEEE Trans Neural Syst Rehabil Eng. 2004;12(3):339–344. doi: https://doi.org/10.1109/TNSRE.2004.834629
  19. Kennedy PR, Bakay RA, Moore MM, et al. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8(2):198–202. doi: https://doi.org/10.1109/86.847815
  20. Flesher SN, Downey JE, Weiss JM, et al. A brain–computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831–836. doi: https://doi.org/10.1126/science.abd0380
  21. Shah NP, Willsey MS, Hahn N, et al. A brain-computer typing interface using finger movements. Int IEEE EMBS Conf Neural Eng. 2023;2023:10.1109/ner52421.2023.10123912. doi: https://doi.org/10.1109/ner52421.2023.10123912
  22. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171. doi: https://doi.org/10.1038/nature04970
  23. Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–375. doi: https://doi.org/10.1038/nature11076
  24. Downey JE, Brane L, Gaunt RA, et al. Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci Rep. 2017;7(1):16947. doi: https://doi.org/10.1038/s41598-017-17222-3
  25. Aflalo T, Kellis S, Klaes C, et al. Neurophysiology. decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015;348(6237):906–910. doi: https://doi.org/10.1126/science.aaa5417
  26. Handelman DA, Osborn LE, Thomas TM, et al. Shared control of bimanual robotic limbs with a brain–machine interface for self-feeding. Front Neurorobot. 2022;16:918001. doi: https://doi.org/10.3389/fnbot.2022.918001
  27. Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247–250. doi: https://doi.org/10.1038/nature17435
  28. Ajiboye AB, Willett FR, Young DR, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–1830. doi: https://doi.org/10.1016/S0140-6736(17)30601-3
  29. Pandarinath C, Nuyujukian P, Blabe CH, et al. High performance communication by people with paralysis using an intracortical brain–computer interface. Elife. 2017;6:e18554. doi: https://doi.org/10.7554/eLife.18554
  30. Nuyujukian P, Albites Sanabria J, Saab J, et al. Cortical control of a tablet computer by people with paralysis. PLoS One. 2018;13(11):e0204566. doi: https://doi.org/10.1371/journal.pone.0204566
  31. Simeral JD, Hosman T, Saab J, et al. Home use of a percutaneous wireless intracortical brain–computer interface by individuals with tetraplegia. IEEE Trans Biomed Eng. 2021;68(7):2313–2325. doi: https://doi.org/10.1109/TBME.2021.3069119
  32. Jarosiewicz B, Sarma AA, Bacher D, et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci Transl Med. 2015;7(313):313ra179. doi: https://doi.org/10.1126/scitranslmed.aac7328
  33. Bacher D, Jarosiewicz B, Masse NY, et al. Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabil Neural Repair. 2015;29(5):462–471. doi: https://doi.org/10.1177/1545968314554624
  34. Chaudhary U, Vlachos I, Zimmermann JB, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat Commun. 2022;13(1):1236. doi: https://doi.org/10.1038/s41467-022-28859-8
  35. Willett FR, Kunz EM, Fan C, et al. A high-performance speech neuroprosthesis. Nature. 2023;620(7976):1031–1036. doi: https://doi.org/10.1038/s41586-023-06377-x
  36. Gilja V, Pandarinath C, Blabe CH, et al. Clinical translation of a high-performance neural prosthesis. Nat Med. 2015;21(10):1142–1145. doi: https://doi.org/10.1038/nm.3953
  37. Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–564. doi: https://doi.org/10.1016/S0140-6736(12)61816-9
  38. Wodlinger B, Downey JE, Tyler-Kabara EC, et al. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J Neural Eng. 2015;12(1):016011. doi: https://doi.org/10.1088/1741-2560/12/1/016011
  39. Chadwick EK, Blana D, Simeral JD, et al. Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. J Neural Eng. 2011;8(3):034003. doi: https://doi.org/10.1088/1741-2560/8/3/034003
  40. Moly A, Costecalde T, Martel F, et al. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. J Neural Eng. 2022;19(2):026021. doi: https://doi.org/10.1088/1741-2552/ac59a0
  41. Wang W, Collinger JL, Degenhart AD, et al. An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 2013;8(2):e55344. doi: https://doi.org/10.1371/journal.pone.0055344
  42. Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112–1122. doi: https://doi.org/10.1016/S1474-4422(19)30321-7
  43. Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375(21):2060–2066. doi: https://doi.org/10.1056/NEJMoa1608085
  44. Davis KC, Meschede-Krasa B, Cajigas I, et al. Design-development of an at-home modular brain–computer interface (BCI) platform in a case study of cervical spinal cord injury. J Neuroeng Rehabil. 2022;19(1):53. doi: https://doi.org/10.1186/s12984-022-01026-2
  45. Metzger SL, Littlejohn KT, Silva AB, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature. 2023;620(7976):1037–1046. doi: https://doi.org/10.1038/s41586-023-06443-4
  46. Pels EGM, Aarnoutse EJ, Leinders S, et al. Stability of a chronic implanted brain–computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 2019;130(10):1798–1803. doi: https://doi.org/10.1016/j.clinph.2019.07.020
  47. Cajigas I, Davis KC, Meschede-Krasa B, et al. Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun. 2021;3(4):fcab248. doi: https://doi.org/10.1093/braincomms/fcab248
  48. Angrick M, Luo S, Rabbani Q, et al. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS. Sci Rep. 2024;14(1):9617. doi: https://doi.org/10.1038/s41598-024-60277-2
  49. Luo S, Angrick M, Coogan C, et al. Stable decoding from a speech BCI enables control for an individual with ALS without recalibration for 3 months. Adv Sci (Weinh). 2023;10(35):e2304853. doi: https://doi.org/10.1002/advs.202304853
  50. Oxley TJ, Yoo PE, Rind GS, et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J Neurointerv Surg. 2021;13(2):102–108. doi: https://doi.org/10.1136/neurintsurg-2020-016862
  51. Brannigan JFM, Fry A, Opie NL, et al. Endovascular brain–computer interfaces in poststroke paralysis. Stroke. 2024;55(2):474–483. doi: https://doi.org/10.1161/STROKEAHA.123.037719
  52. Ho E, Hettick M, Papageorgiou D, et al. The layer 7 cortical interface: a scalable and minimally invasive brain–computer interface platform. bioRxiv. 2022; doi: https://doi.org/10.1101/2022.01.02.474656
  53. Jung T, Zeng N, Fabbri JD, et al. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain–computer interface device. bioRxiv. 2024;2024.05.17.594333. doi: https://doi.org/10.1101/2024.05.17.594333
  54. Donoghue JP, Nurmikko A, Black M, et al. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol. 2007;579(Pt 3):603–611. doi: https://doi.org/10.1113/jphysiol.2006.127209
  55. Rubin DB, Ajiboye AB, Barefoot L, et al. Interim safety profile from the feasibility study of the braingate neural interface system. Neurology. 2023;100(11):e1177–е1192. doi: https://doi.org/10.1212/WNL.0000000000201707
  56. Clinicaltrials.gov/study/NCT06429735 [Internet]. Study Details. Available from: https://clinicaltrials.gov/study/NCT06429735 (accessed: 30.05.2024).
  57. Rainey S, Maslen H, Savulescu J. When thinking is doing: responsibility for BCI-mediated action. AJOB Neurosci. 2020;11(1):46–58. doi: https://doi.org/10.1080/21507740.2019.1704918
  58. Petrosyan A, Voskoboinikov A, Sukhinin D, et al. Speech decoding from a small set of spatially segregated minimally invasive intracranial EEG electrodes with a compact and interpretable neural network. J Neural Eng. 2022;19(6). doi: https://doi.org/10.1088/1741-2552/aca1e1
  59. Valle G, Katic Secerovic N, Eggemann D, et al. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun. 2024;15(1):1151. doi: https://doi.org/10.1038/s41467-024-45190-6
  60. Soghoyan G, Biktimirov A, Matvienko Y, et al. Peripheral nerve stimulation enables somatosensory feedback while suppressing phantom limb pain in transradial amputees. Brain Stimul. 2023;16(3):756–758. doi: https://doi.org/10.1016/j.brs.2023.04.017

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Основные виды имплантатов инвазивного интерфейса мозг–компьютер, проходящие клинические исследования (схематично)

Скачать (232KB)

© Издательство "Педиатръ", 2025



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах