KIM-1 and Other Markers of Acute Kidney Injury in Cisplatin-Induced Nephrotoxicity

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nephrotoxicity is one of the main dose-limiting factors for cisplatin in anticancer chemotherapy. The limitations of traditional indicators of renal function, such as blood creatinine and urea nitrogen, encourage the search for new informative markers that allow early diagnosis of cisplatin-induced nephrotoxicity in order to properly maintain kidney health and timely correct the treatment plan. This review provides a general description of biomarkers of acute kidney injury (AKI), which have received special attention in this aspect today. Experimental and clinical data from recent years regarding these indicators in cisplatin-induced AKI are presented, with an emphasis on one of the most promising biomarkers, kidney injury molecule 1 (KIM-1).

Full Text

Restricted Access

About the authors

Natalia S. Sergeeva

P.A. Herzen Moscow Oncology Research Institute

Email: prognoz.01@mail.ru
ORCID iD: 0000-0001-7406-9973
SPIN-code: 1805-8141

PhD in Biology, Professor

Россия, Moscow

Tatiana A. Karmakova

P.A. Herzen Moscow Oncology Research Institute

Author for correspondence.
Email: kalmar123@yandex.ru
ORCID iD: 0000-0002-8017-5657
SPIN-code: 4364-6134

PhD in Biology

Россия, Moscow

Victoria V. Savchina

P.A. Herzen Moscow Oncology Research Institute

Email: Savchina_v.v@mail.ru
ORCID iD: 0000-0002-8721-8437
SPIN-code: 1263-7777

MD, Сhemotherapist

Россия, Moscow

Igor I. Alentov

P.A. Herzen Moscow Oncology Research Institute

Email: igoralentov@yandex.ru
ORCID iD: 0000-0002-5920-5823
SPIN-code: 9992-7676

PhD in Biology, Senior Researcher

Россия, Moscow

Elena Yu. Karpenko

P.A. Herzen Moscow Oncology Research Institute

Email: karpenko.elena@inbox.ru
ORCID iD: 0000-0003-3529-5964
SPIN-code: 3196-4925

MD, Сhemotherapist

Россия, Moscow

Nina V. Marshutina

P.A. Herzen Moscow Oncology Research Institute

Email: nin.mars@mail.ru
ORCID iD: 0000-0003-2997-4936
SPIN-code: 8366-9485

PhD in Biology, Researcher

Россия, Moscow

Andrey D. Kaprin

National Medical Research Radiological Centre; Peoples’ Friendship University of Russia (RUDN University)

Email: kaprin@mail.ru
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101

MD, PhD, Professor, Academician of the Russian Academy of Medical Sciences

Россия, Moscow; Moscow

References

  1. Бурнашева Е.В., Шатохин Ю.В., Снежко И.В., и др. Поражение почек при противоопухолевой терапии // Нефрология. — 2018. — Т. 22. — № 5. — С. 17–24. [Burnasheva EV, Shatokhin YuV, Snezhko IV, et al. Kidney damage during antitumor therapy. Nefrologia (Nephrology). 2018;22(5):17–24. (In Russ.)] doi: https://doi.org/10.24884/1561-6274-2018-22-5-17-24
  2. Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–619. doi: https://doi.org/10.1634/theoncologist.2016-0319
  3. Latcha S, Jaimes EA, Patil S, et al. Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol. 2016;11(7):1173–1179. doi: https://doi.org/10.2215/CJN.08070715
  4. Luft FC. Biomarkers and predicting acute kidney injury. Acta Physiol (Oxf). 2021;231(1):e13479. doi: https://doi.org/ 10.1111/apha.13479
  5. Громова Е.Г., Бирюкова Л.С., Джумабаева Б.Т., и др. Практические рекомендации по коррекции нефротоксичности противоопухолевых препаратов // Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. — 2022. — № 12. — С.144–158. [Gromova EG, Biryukova LS, Dzhumabaeva BT, et al. Practical recommendations for the correction of nephrotoxicity of antitumor drugs. Malignant tumors: Practical recommendations RUSSCO #3s2. 2022;12:144–158. (In Russ.)]. doi: https://doi.org/10.18027 / 2224-5057-2020-10-3s2-46
  6. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;1:1–126.
  7. Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? Transl Res. 2012;159(4):277–289. doi: https://doi.org/10.1016/j.trsl.2012.01.014
  8. McSweeney KR, Gadanec LK, Qaradakhi T, et al. Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mmitigations. Cancers (Basel). 2021;13(7):1572. doi: https://doi.org/10.3390/cancers13071572
  9. Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011. doi: https://doi.org/10.3390/ijms20123011
  10. Veiga-Matos J, Remião F, Motales A. Pharmacokinetics and toxicokinetics roles of membrane transporters at kidney level. J Pharm Pharm Sci. 2020;23:333–356. doi: https://doi.org/10.18433/jpps30865
  11. Mapuskar KA, Steinbach EJ, Zaher A, et al. Mitochondrial superoxide dismutase in cisplatin-induced kidney injury. Antioxidants (Basel). 2021;10(9):1329. doi: https://doi.org/10.3390/antiox10091329
  12. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223–242. doi: https://doi.org/10.1016/j.etp.2008.09.003
  13. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15–25. doi: https://doi.org/ 10.1007/s40620-017-0392-z
  14. Bailly V, Zhang Z, Meier W, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277(42):39739–39748. doi: https://doi.org/10.1074/jbc.M200562200
  15. Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–563. doi: https://doi.org/10.1152/ajprenal.00285.2002
  16. Zhang PL, Rothblum LI, Han WK, et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–614. doi: https://doi.org/10.1038/sj.ki.5002697
  17. Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Investig. 2008;118(5):1657–1668. doi: https://doi.org/10.1172/JCI34487
  18. Zhao X, Jiang C, Olufade R, et al. Kidney injury molecule-1 enhances endocytosis of albumin in renal proximal tubular cells. J Cell Physiol. 2016;231(4):896–907. doi: https://doi.org/10.1002/jcp.25181
  19. Balasubramanian S, Jansen M, Valerius MT, et al. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol. 2012;23(4):674–686. doi: https://doi.org/10.1681/ASN.2011070646
  20. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 2015;34(19):2441–2464. doi: https://doi.org/10.15252/embj.201489838
  21. Zhang Z, Cai CX. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem. 2016;416(1–2):109–116. doi: https://doi.org/10.1007/s11010-016-2700-7
  22. Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–130. doi: https://doi.org/10.1146/annurev-nutr-071816-064559
  23. Romejko K, Markowska M, Niemczyk S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int J Mol Sci. 2023;24(13):10470. doi: https://doi.org/10.3390/ijms241310470
  24. Marakala V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury — A systematic review. Clin Chim Acta. 2022;536:135–141. doi: https://doi.org/10.1016/j.cca.2022.08.029
  25. Hvidberg V, Jacobsen C, Strong RK, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–777. doi: https://doi.org/10.1016/j.febslet.2004.12.031
  26. Schrezenmeir EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury — pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017;219(3):554–572. doi: https://doi.org/10.1111/apha.12764
  27. Ghadrdan E, Ebrahimpour S, Sadighi S, et al. Evaluation of urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as biomarkers of renal function in cancer patients treated with cisplatin. J Oncol Pharm Pract. 2020;26(7):1643–1649. doi: https://doi.org/10.1177/1078155220901756
  28. Abdelsalam M, Elmorsy E, Abdelwahab H, et al. Urinary biomarkers for early detection of platinum based drugs induced nephrotoxicity. BMC Nephrol. 2018;19(1):219. doi: https://doi.org/10.1186/s12882-018-1022-2
  29. Ma Q, Devarajan SR, Devarajan P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin. Ren Fail. 2016;38(9):1476–1482. doi: https://doi.org/10.1080/0886022X.2016.1227917
  30. Peacock WF 4th, Maisel A, Kim J, Ronco C. Neutrophil gelatinase associated lipocalin in acute kidney injury. Postgrad Med. 2013;125(6):82–93. doi: https://doi.org/10.3810/pgm.2013.11.2715
  31. Ronco C, Legrand M, Goldstein SL, et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–285. doi: https://doi.org/ 10.1159/000360689
  32. Desai RJ, Kazarov CL, Wong A, et al. Kidney damage and stress biomarkers for early identification of drug-induced kidney injury: A systematic review. Drug Saf. 2022;45(8):839–852. doi: https://doi.org/10.1007/s40264-022-01202-2
  33. Mady LJ, Haleem F, Christakos S. Calcium-buffering proteins: Calbindin. In: Encyclopedia of Biological Chemistry. Elsevier Inc.; 2013. P. 284–289. doi: https://doi.org/10.1016/B978-0-12-378630-2.00228-0
  34. Wu MJ, Lai LW, Lien YH. Cytoprotective effects of calbindin-D(28k) against antimycin-A induced hypoxic injury in proximal tubular cells. Life Sci. 2002;71(5):559–569. doi: https://doi.org/10.1016/s0024-3205(02)01710-1
  35. George B, Szilagyi JT, Joy MS, et al. Regulation of renal calbindin expression during cisplatin-induced kidney injury. J Biochem Mol Toxicol. 2022;36(7):e23068. doi: https://doi.org/10.1002/jbt.23068
  36. Iida T, Fujinaka H, Xu B, et al. Decreased urinary calbindin 1 levels in proteinuric rats and humans with distal nephron segment injuries. Clin Exp Nephrol. 2014;18(3):432–443. doi: https://doi.org/10.1007/s10157-013-0835-3
  37. Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cystatin C: a kidney function biomarker. Adv Clin Chem. 2015;68:57–69. doi: https://doi.org/10.1016/bs.acc.2014.11.007
  38. Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. 2003;70:179–199. doi: https://doi.org/10.1042/bss0700179
  39. Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–230. doi: https://doi.org/10.1053/j.ajkd.2006.04.085
  40. Woo KS, Choi JL, Kim BR, et al. Clinical usefulness of serum cystatin C as a marker of renal function. Diabetes Metab J. 2014;38(4):278–284. doi: https://doi.org/10.4093/dmj.2014.38.4.278
  41. Ichioka D, Kawai K, Tanaka K, et al. Possible risk of overestimation of renal function using cystatin C-based eGFR in testicular cancer survivors treated with cisplatin-based chemotherapy. Clin Exp Nephrol. 2018;22(3):727–734. doi: https://doi.org/10.1007/s10157-017-1474-x
  42. Bodnar L, Wcislo GB, Smoter M, et al. Cystatin C as a parameter of glomerular filtration rate in patients with ovarian cancer. Kidney Blood Press Res. 2010;33(5):360–367. doi: https://doi.org/10.1159/000319097
  43. Cavalcanti E, Barchiesi V, Cerasuolo D, et al. Correlation of serum cystatin C with glomerular filtration rate in patients receiving platinum-based chemotherapy. Anal Cell Pathol (Amst). 2016;2016:4918325. doi: https://doi.org/10.1155/2016/4918325
  44. Lambert M, White-Koning M, Alonso M, et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide. Pediatr Blood Cancer. 2021;68(1):e28747. doi: https://doi.org/10.1002/pbc.28747
  45. Li L, Dong M, Wang XG. The implication and significance of beta 2 microglobulin: A conservative multifunctional regulator. Chin Med J (Engl). 2016;129(4):448–455. doi: https://doi.org/10.4103/0366-6999.176084
  46. Smith LK, He Y, Park JS, et al. ß2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21(8):932–937. doi: https://doi.org/10.1038/nm.3898
  47. Shi C, Zhu Y, Su Y, et al. Beta 2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today. 2009;14(1–2):25–30. doi: https://doi.org/10.1016/j.drudis.2008.11.001
  48. Парилова Н.К., Сергеева Н.С., Маршутина Н.В., и др. Прогностическое значение тимидинкиназы-1 в сравнении с β2-микроглобулином и лактатдегидрогеназой при злокачественных лимфопролиферативных заболеваниях // Клиническая онкогематология. — 2016. — Т. 9. — № 1. — С. 6–12. [Parilova NK, Sergeeva NS, Marshutina NV, et al. Prognostic value of thymidine kinase-1 versus β2-microglobulin and lactate dehydrogenase in malignant lymphoproliferative diseases. Klinicheskaya onkogematologia (Clinical oncohematology). 2016;9(1):6–12. (In Russ.)] doi: https://doi.org/10.21320/2500-2139-2016-9-1-6-12
  49. Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial. 2009; 22(4):378–380. doi: https://doi.org/10.1111/j.1525-139X.2009.00584.x
  50. El-Frargy MS, El-Refaey AM, Eid R, et al. Serum cystatin-C and BETA 2-microglobulin as accurate markers in the early diagnosis of kidney injury in neonates: A single center study. Saudi J Kidney Dis Transpl. 2015;26(4):712–717. doi: https://doi.org/10.4103/1319-2442.160151
  51. Zareifar S, Jafari H, Geramizadeh B, et al. The evaluation of cisplatin effect on tubular function in children on chemotherapy. Pediatr Hematol Oncol. 2013;30(1):18–24. doi: https://doi.org/10.3109/08880018.2012.737093
  52. Lee BS, Lee JH, Kang HG, et al. Ifosfamide nephrotoxicity in pediatric cancer patients. Pediatr Nephrol. 2001;16(10):796–799. doi: https://doi.org/10.1007/s004670100658
  53. Dekkers IA, Blijdorp K, Cransberg K, et al. Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol. 2013;8(6):922–929. doi: https://doi.org/10.2215/CJN.09980912
  54. Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17–24. doi: https://doi.org/10.1016/j.clinbiochem.2018.07.003
  55. Mazzali M, Kipari T, Ophascharoensuk V, et al. Osteopontin — a molecule for all seasons. QJM. 2002;95(1):3–13. doi: https://doi.org/10.1093/qjmed/95.1.3
  56. Jia Q, Huang Z, Wang G, et al. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol. 2022;13:1036423. doi: https://doi.org/10.3389/fphar.2022.1036423
  57. Trostel J, Truong LD, Roncal-Jimenez C, et al. Different effects of global osteopontin and macrophage osteopontin in glomerular injury. Am J Physiol Renal Physiol. 2018;315(4):F759–F768. doi: https://doi.org/10.1152/ajprenal.00458.2017
  58. Xie Y, Sakatsume M, Nishi S, et al. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60(5):1645–1657. doi: https://doi.org/10.1046/j.1523-1755.2001.00032.x
  59. Iguchi S, Nishi S, Ikegame M, et al. Expression of osteopontin in cisplatin-induced tubular injury. Nephron Exp Nephrol. 2004;97(3):e96–105. doi: https://doi.org/10.1159/000078643
  60. Kashiwagi E, Tonomura Y, Kondo C, et al. Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure. Exp Toxicol Pathol. 2014;66(7):301–311. doi: https://doi.org/10.1016/j.etp.2014.04.007
  61. Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, et al. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother. 2021;134:111174. doi: https://doi.org/10.1016/j.biopha.2020.111174
  62. Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts. 2016;7(1):1–15. doi: https://doi.org/10.1515/bmc-2015-0026
  63. Weng X, Zhao H, Guan Q, et al. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol. 2021;99(3):274–287. doi: https://doi.org/10.1111/imcb.12405
  64. Vinken P, Starckx S, Barale-Thomas E, et al. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol Pathol. 2012;40(7):1049–1062. doi: https://doi.org/10.1177/0192623312444765
  65. Negishi K, Noiri E, Maeda R, et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 2008;73(12):1374–1384. doi: https://doi.org/10.1038/ki.2008.106
  66. Yokoyama T, Kamijo-Ikemori A, Sugaya T, et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–2106. doi: https://doi.org/10.2353/ajpath.2009.080780
  67. Katagiri D, Hamasaki Y, Doi K, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int. 2016;89(2):374–385. doi: https://doi.org/10.1038/ki.2015.327
  68. Rajasundari A, Pays L, Mehlen P, et al. Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. Lab Invest. 2011;91(12):1717–1726. doi: https://doi.org/10.1038/labinvest.2011.126
  69. Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2008;294(4):F731–738. doi: https://doi.org/10.1152/ajprenal.00507.2007
  70. Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–939. doi: https://doi.org/10.1164/rccm.201401-0077OC
  71. Toprak Z, Cebeci E, Helvaci SA, et al. Cisplatin nephrotoxicity is not detected by urinary cell-cycle arrest biomarkers in lung cancer patients. Int Urol Nephrol. 2017;49(6):1041–1047. doi: https://doi.org/10.1007/s11255-017-1556-4
  72. Schanz M, Hoferer A, Shi J, et al. Urinary TIMP2⋅IGFBP7 for the prediction of platinum-induced acute renal injury. Int J Nephrol Renovasc Dis. 2017;10:175–1181. doi: https://doi.org/10.2147/IJNRD.S135271
  73. Pajenda S, Ilhan-Mutlu A, Preusser M, et al. NephroCheck data compared to serum creatinine in various clinical settings. BMC Nephrol. 2015;16:206. doi: https://doi.org/10.1186/s12882-015-0203-5
  74. Tonomura Y, Tsuchiya N, Torii M, et al. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology. 2010;273(1–3):53–59. doi: https://doi.org/10.1016/j.tox.2010.04.015
  75. Sasaki D, Yamada A, Umeno H, et al. Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers. 2011;16(7):553–566. doi: https://doi.org/10.3109/1354750X.2011.613123
  76. McDuffie JE, Ma JY, Sablad M, et al. Time course of renal proximal tubule injury, reversal, and related biomarker changes in rats following cisplatin administration. Int J Toxicol. 2013;32(4):251–260. doi: https://doi.org/10.1177/1091581813493013
  77. Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med. 2013;61(3):564–568. doi: https://doi.org/10.2310/JIM.0b013e31828233a8
  78. Sohn SJ, Kim SY, Kim HS, et al. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett. 2013;217(3):235–242. doi: https://doi.org/10.1016/j.toxlet.2012.12.015
  79. Wadey RM, Pinches MG, Jones HB, et al. Tissue expression and correlation of a panel of urinary biomarkers following cisplatin-induced kidney injury. Toxicol Pathol. 2014;42(3):591–602. doi: https://doi.org/10.1177/0192623313492044
  80. Kuwata K, Nakamura I, Ide M, et al. Comparison of changes in urinary and blood levels of biomarkers associated with proximal tubular injury in rat models. J Toxicol Pathol. 2015;28(3):151–164. doi: https://doi.org/10.1293/tox.2014-0039
  81. Uchino H, Fujishima J, Fukuoka K, et al. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–640. doi: https://doi.org/10.2131/jts.42.629
  82. Ewees MG, Messiha BAS, Abo-Saif AA, et al. Interference with coagulation cascade as a novel approach to counteract cisplatin-induced acute tubular necrosis; an experimental study in rats. Front Pharmacol. 2018;9:1155. doi: https://doi.org/10.3389/fphar.2018.01155
  83. Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: A dialog between the FDA EMEA and predictive safety testing consortium. Nat Biotechnol. 2010;28(5): 455–462. doi: https://doi.org/10.1038/nbt.1625
  84. Tekce BK, Uyeturk U, Tekce H, et al. Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann Clin Biochem. 2015;52(Pt 1):88–94. doi: https://doi.org/10.1177/0004563214528312
  85. Hosohata K, Washino S, Kubo T, et al. Early prediction of cisplatin-induced nephrotoxicity by urinary vanin-1 in patients with urothelial carcinoma. Toxicology. 2016;359–360:71–75. doi: https://doi.org/10.1016/j.tox.2016.06.011
  86. Pianta TJ, Pickering JW, Succar L, et al. Dexamethasone modifies cystatin C-based diagnosis of acute kidney injury during cisplatin-based chemotherapy. Kidney Blood Press Res. 2017;42(1):62–75. doi: https://doi.org/ 10.1159/000469715
  87. George B, Wen X, Mercke N, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101(4):510–518. doi: https://doi.org/10.1002/cpt.606
  88. George B, Wen X, Mercke N, et al. Time-dependent changes in kidney injury biomarkers in patients receiving multiple cycles of cisplatin chemotherapy. Toxicol Rep. 2020;7:571–576. doi: https://doi.org/10.1016/j.toxrep.2020.04.003
  89. Ghonaim E, El-Haggar S, Gohar S. Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial. Med Oncol. 2021;38(9):108. doi: https://doi.org/10.1007/s12032-021-01558-y
  90. Гречухина К.С., Чеботарева Н.В., Жукова Л.Г., и др. NGAL и KIM-1 — ранние мочевые биомаркеры нефротоксичности, опосредованной цисплатином: обсервационное исследование // Современная онкология. — 2022. — Т. 24. — № 1. — С. 119–124. [Grechukhina KS, Chebotareva NV, Zhukova LG, et al. NGAL and KIM-1 — early urinary biomarkers of nephrotoxicity mediated by cisplatin: Observational study. Sovremennaya onkologia (Journal of Modern Oncology). 2022;24(1):119–124. (In Russ.)] doi: https://doi.org/10.26442/18151434.2022.1.201285
  91. de Godoy Torso N, Visacri MB, Quintanilha JCF, et al. Assessment of renal function in head and neck cancer patients treated with cisplatin: Different biomarkers and acute kidney injury classifications. Int J Mol Sci. 2022;24(1):141. doi: https://doi.org/10.3390/ijms24010141
  92. Ibrahim ME, Chang C, Hu Y, et al. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients. Eur J Clin Pharmacol. 2019;75(1):51–57. doi: https://doi.org/10.1007/s00228-018-2552-z

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biomarkers of acute kidney injury associated with lesions of the respective nephron sections

Download (214KB)

Copyright (c) 2024 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies