KIM-1 and Other Markers of Acute Kidney Injury in Cisplatin-Induced Nephrotoxicity
- Authors: Sergeeva N.S.1, Karmakova T.A.1, Savchina V.V.1, Alentov I.I.1, Karpenko E.Y.1, Marshutina N.V.1, Kaprin A.D.2,3
-
Affiliations:
- P.A. Herzen Moscow Oncology Research Institute
- National Medical Research Radiological Centre
- Peoples’ Friendship University of Russia (RUDN University)
- Issue: Vol 79, No 4 (2024)
- Pages: 327-337
- Section: РATHOPHYSIOLOGY: CURRENT ISSUES
- Published: 10.10.2024
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/17959
- DOI: https://doi.org/10.15690/vramn17959
- ID: 17959
Cite item
Abstract
Nephrotoxicity is one of the main dose-limiting factors for cisplatin in anticancer chemotherapy. The limitations of traditional indicators of renal function, such as blood creatinine and urea nitrogen, encourage the search for new informative markers that allow early diagnosis of cisplatin-induced nephrotoxicity in order to properly maintain kidney health and timely correct the treatment plan. This review provides a general description of biomarkers of acute kidney injury (AKI), which have received special attention in this aspect today. Experimental and clinical data from recent years regarding these indicators in cisplatin-induced AKI are presented, with an emphasis on one of the most promising biomarkers, kidney injury molecule 1 (KIM-1).
Full Text
About the authors
Natalia S. Sergeeva
P.A. Herzen Moscow Oncology Research Institute
Email: prognoz.01@mail.ru
ORCID iD: 0000-0001-7406-9973
SPIN-code: 1805-8141
PhD in Biology, Professor
Россия, MoscowTatiana A. Karmakova
P.A. Herzen Moscow Oncology Research Institute
Author for correspondence.
Email: kalmar123@yandex.ru
ORCID iD: 0000-0002-8017-5657
SPIN-code: 4364-6134
PhD in Biology
Россия, MoscowVictoria V. Savchina
P.A. Herzen Moscow Oncology Research Institute
Email: Savchina_v.v@mail.ru
ORCID iD: 0000-0002-8721-8437
SPIN-code: 1263-7777
MD, Сhemotherapist
Россия, MoscowIgor I. Alentov
P.A. Herzen Moscow Oncology Research Institute
Email: igoralentov@yandex.ru
ORCID iD: 0000-0002-5920-5823
SPIN-code: 9992-7676
PhD in Biology, Senior Researcher
Россия, MoscowElena Yu. Karpenko
P.A. Herzen Moscow Oncology Research Institute
Email: karpenko.elena@inbox.ru
ORCID iD: 0000-0003-3529-5964
SPIN-code: 3196-4925
MD, Сhemotherapist
Россия, MoscowNina V. Marshutina
P.A. Herzen Moscow Oncology Research Institute
Email: nin.mars@mail.ru
ORCID iD: 0000-0003-2997-4936
SPIN-code: 8366-9485
PhD in Biology, Researcher
Россия, MoscowAndrey D. Kaprin
National Medical Research Radiological Centre; Peoples’ Friendship University of Russia (RUDN University)
Email: kaprin@mail.ru
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101
MD, PhD, Professor, Academician of the Russian Academy of Medical Sciences
Россия, Moscow; MoscowReferences
- Бурнашева Е.В., Шатохин Ю.В., Снежко И.В., и др. Поражение почек при противоопухолевой терапии // Нефрология. — 2018. — Т. 22. — № 5. — С. 17–24. [Burnasheva EV, Shatokhin YuV, Snezhko IV, et al. Kidney damage during antitumor therapy. Nefrologia (Nephrology). 2018;22(5):17–24. (In Russ.)] doi: https://doi.org/10.24884/1561-6274-2018-22-5-17-24
- Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–619. doi: https://doi.org/10.1634/theoncologist.2016-0319
- Latcha S, Jaimes EA, Patil S, et al. Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol. 2016;11(7):1173–1179. doi: https://doi.org/10.2215/CJN.08070715
- Luft FC. Biomarkers and predicting acute kidney injury. Acta Physiol (Oxf). 2021;231(1):e13479. doi: https://doi.org/ 10.1111/apha.13479
- Громова Е.Г., Бирюкова Л.С., Джумабаева Б.Т., и др. Практические рекомендации по коррекции нефротоксичности противоопухолевых препаратов // Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. — 2022. — № 12. — С.144–158. [Gromova EG, Biryukova LS, Dzhumabaeva BT, et al. Practical recommendations for the correction of nephrotoxicity of antitumor drugs. Malignant tumors: Practical recommendations RUSSCO #3s2. 2022;12:144–158. (In Russ.)]. doi: https://doi.org/10.18027 / 2224-5057-2020-10-3s2-46
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;1:1–126.
- Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? Transl Res. 2012;159(4):277–289. doi: https://doi.org/10.1016/j.trsl.2012.01.014
- McSweeney KR, Gadanec LK, Qaradakhi T, et al. Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mmitigations. Cancers (Basel). 2021;13(7):1572. doi: https://doi.org/10.3390/cancers13071572
- Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011. doi: https://doi.org/10.3390/ijms20123011
- Veiga-Matos J, Remião F, Motales A. Pharmacokinetics and toxicokinetics roles of membrane transporters at kidney level. J Pharm Pharm Sci. 2020;23:333–356. doi: https://doi.org/10.18433/jpps30865
- Mapuskar KA, Steinbach EJ, Zaher A, et al. Mitochondrial superoxide dismutase in cisplatin-induced kidney injury. Antioxidants (Basel). 2021;10(9):1329. doi: https://doi.org/10.3390/antiox10091329
- Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223–242. doi: https://doi.org/10.1016/j.etp.2008.09.003
- Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15–25. doi: https://doi.org/ 10.1007/s40620-017-0392-z
- Bailly V, Zhang Z, Meier W, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277(42):39739–39748. doi: https://doi.org/10.1074/jbc.M200562200
- Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–563. doi: https://doi.org/10.1152/ajprenal.00285.2002
- Zhang PL, Rothblum LI, Han WK, et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–614. doi: https://doi.org/10.1038/sj.ki.5002697
- Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Investig. 2008;118(5):1657–1668. doi: https://doi.org/10.1172/JCI34487
- Zhao X, Jiang C, Olufade R, et al. Kidney injury molecule-1 enhances endocytosis of albumin in renal proximal tubular cells. J Cell Physiol. 2016;231(4):896–907. doi: https://doi.org/10.1002/jcp.25181
- Balasubramanian S, Jansen M, Valerius MT, et al. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol. 2012;23(4):674–686. doi: https://doi.org/10.1681/ASN.2011070646
- Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 2015;34(19):2441–2464. doi: https://doi.org/10.15252/embj.201489838
- Zhang Z, Cai CX. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem. 2016;416(1–2):109–116. doi: https://doi.org/10.1007/s11010-016-2700-7
- Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–130. doi: https://doi.org/10.1146/annurev-nutr-071816-064559
- Romejko K, Markowska M, Niemczyk S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int J Mol Sci. 2023;24(13):10470. doi: https://doi.org/10.3390/ijms241310470
- Marakala V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury — A systematic review. Clin Chim Acta. 2022;536:135–141. doi: https://doi.org/10.1016/j.cca.2022.08.029
- Hvidberg V, Jacobsen C, Strong RK, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–777. doi: https://doi.org/10.1016/j.febslet.2004.12.031
- Schrezenmeir EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury — pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017;219(3):554–572. doi: https://doi.org/10.1111/apha.12764
- Ghadrdan E, Ebrahimpour S, Sadighi S, et al. Evaluation of urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as biomarkers of renal function in cancer patients treated with cisplatin. J Oncol Pharm Pract. 2020;26(7):1643–1649. doi: https://doi.org/10.1177/1078155220901756
- Abdelsalam M, Elmorsy E, Abdelwahab H, et al. Urinary biomarkers for early detection of platinum based drugs induced nephrotoxicity. BMC Nephrol. 2018;19(1):219. doi: https://doi.org/10.1186/s12882-018-1022-2
- Ma Q, Devarajan SR, Devarajan P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin. Ren Fail. 2016;38(9):1476–1482. doi: https://doi.org/10.1080/0886022X.2016.1227917
- Peacock WF 4th, Maisel A, Kim J, Ronco C. Neutrophil gelatinase associated lipocalin in acute kidney injury. Postgrad Med. 2013;125(6):82–93. doi: https://doi.org/10.3810/pgm.2013.11.2715
- Ronco C, Legrand M, Goldstein SL, et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–285. doi: https://doi.org/ 10.1159/000360689
- Desai RJ, Kazarov CL, Wong A, et al. Kidney damage and stress biomarkers for early identification of drug-induced kidney injury: A systematic review. Drug Saf. 2022;45(8):839–852. doi: https://doi.org/10.1007/s40264-022-01202-2
- Mady LJ, Haleem F, Christakos S. Calcium-buffering proteins: Calbindin. In: Encyclopedia of Biological Chemistry. Elsevier Inc.; 2013. P. 284–289. doi: https://doi.org/10.1016/B978-0-12-378630-2.00228-0
- Wu MJ, Lai LW, Lien YH. Cytoprotective effects of calbindin-D(28k) against antimycin-A induced hypoxic injury in proximal tubular cells. Life Sci. 2002;71(5):559–569. doi: https://doi.org/10.1016/s0024-3205(02)01710-1
- George B, Szilagyi JT, Joy MS, et al. Regulation of renal calbindin expression during cisplatin-induced kidney injury. J Biochem Mol Toxicol. 2022;36(7):e23068. doi: https://doi.org/10.1002/jbt.23068
- Iida T, Fujinaka H, Xu B, et al. Decreased urinary calbindin 1 levels in proteinuric rats and humans with distal nephron segment injuries. Clin Exp Nephrol. 2014;18(3):432–443. doi: https://doi.org/10.1007/s10157-013-0835-3
- Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cystatin C: a kidney function biomarker. Adv Clin Chem. 2015;68:57–69. doi: https://doi.org/10.1016/bs.acc.2014.11.007
- Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. 2003;70:179–199. doi: https://doi.org/10.1042/bss0700179
- Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–230. doi: https://doi.org/10.1053/j.ajkd.2006.04.085
- Woo KS, Choi JL, Kim BR, et al. Clinical usefulness of serum cystatin C as a marker of renal function. Diabetes Metab J. 2014;38(4):278–284. doi: https://doi.org/10.4093/dmj.2014.38.4.278
- Ichioka D, Kawai K, Tanaka K, et al. Possible risk of overestimation of renal function using cystatin C-based eGFR in testicular cancer survivors treated with cisplatin-based chemotherapy. Clin Exp Nephrol. 2018;22(3):727–734. doi: https://doi.org/10.1007/s10157-017-1474-x
- Bodnar L, Wcislo GB, Smoter M, et al. Cystatin C as a parameter of glomerular filtration rate in patients with ovarian cancer. Kidney Blood Press Res. 2010;33(5):360–367. doi: https://doi.org/10.1159/000319097
- Cavalcanti E, Barchiesi V, Cerasuolo D, et al. Correlation of serum cystatin C with glomerular filtration rate in patients receiving platinum-based chemotherapy. Anal Cell Pathol (Amst). 2016;2016:4918325. doi: https://doi.org/10.1155/2016/4918325
- Lambert M, White-Koning M, Alonso M, et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide. Pediatr Blood Cancer. 2021;68(1):e28747. doi: https://doi.org/10.1002/pbc.28747
- Li L, Dong M, Wang XG. The implication and significance of beta 2 microglobulin: A conservative multifunctional regulator. Chin Med J (Engl). 2016;129(4):448–455. doi: https://doi.org/10.4103/0366-6999.176084
- Smith LK, He Y, Park JS, et al. ß2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21(8):932–937. doi: https://doi.org/10.1038/nm.3898
- Shi C, Zhu Y, Su Y, et al. Beta 2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today. 2009;14(1–2):25–30. doi: https://doi.org/10.1016/j.drudis.2008.11.001
- Парилова Н.К., Сергеева Н.С., Маршутина Н.В., и др. Прогностическое значение тимидинкиназы-1 в сравнении с β2-микроглобулином и лактатдегидрогеназой при злокачественных лимфопролиферативных заболеваниях // Клиническая онкогематология. — 2016. — Т. 9. — № 1. — С. 6–12. [Parilova NK, Sergeeva NS, Marshutina NV, et al. Prognostic value of thymidine kinase-1 versus β2-microglobulin and lactate dehydrogenase in malignant lymphoproliferative diseases. Klinicheskaya onkogematologia (Clinical oncohematology). 2016;9(1):6–12. (In Russ.)] doi: https://doi.org/10.21320/2500-2139-2016-9-1-6-12
- Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial. 2009; 22(4):378–380. doi: https://doi.org/10.1111/j.1525-139X.2009.00584.x
- El-Frargy MS, El-Refaey AM, Eid R, et al. Serum cystatin-C and BETA 2-microglobulin as accurate markers in the early diagnosis of kidney injury in neonates: A single center study. Saudi J Kidney Dis Transpl. 2015;26(4):712–717. doi: https://doi.org/10.4103/1319-2442.160151
- Zareifar S, Jafari H, Geramizadeh B, et al. The evaluation of cisplatin effect on tubular function in children on chemotherapy. Pediatr Hematol Oncol. 2013;30(1):18–24. doi: https://doi.org/10.3109/08880018.2012.737093
- Lee BS, Lee JH, Kang HG, et al. Ifosfamide nephrotoxicity in pediatric cancer patients. Pediatr Nephrol. 2001;16(10):796–799. doi: https://doi.org/10.1007/s004670100658
- Dekkers IA, Blijdorp K, Cransberg K, et al. Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol. 2013;8(6):922–929. doi: https://doi.org/10.2215/CJN.09980912
- Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17–24. doi: https://doi.org/10.1016/j.clinbiochem.2018.07.003
- Mazzali M, Kipari T, Ophascharoensuk V, et al. Osteopontin — a molecule for all seasons. QJM. 2002;95(1):3–13. doi: https://doi.org/10.1093/qjmed/95.1.3
- Jia Q, Huang Z, Wang G, et al. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol. 2022;13:1036423. doi: https://doi.org/10.3389/fphar.2022.1036423
- Trostel J, Truong LD, Roncal-Jimenez C, et al. Different effects of global osteopontin and macrophage osteopontin in glomerular injury. Am J Physiol Renal Physiol. 2018;315(4):F759–F768. doi: https://doi.org/10.1152/ajprenal.00458.2017
- Xie Y, Sakatsume M, Nishi S, et al. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60(5):1645–1657. doi: https://doi.org/10.1046/j.1523-1755.2001.00032.x
- Iguchi S, Nishi S, Ikegame M, et al. Expression of osteopontin in cisplatin-induced tubular injury. Nephron Exp Nephrol. 2004;97(3):e96–105. doi: https://doi.org/10.1159/000078643
- Kashiwagi E, Tonomura Y, Kondo C, et al. Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure. Exp Toxicol Pathol. 2014;66(7):301–311. doi: https://doi.org/10.1016/j.etp.2014.04.007
- Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, et al. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother. 2021;134:111174. doi: https://doi.org/10.1016/j.biopha.2020.111174
- Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts. 2016;7(1):1–15. doi: https://doi.org/10.1515/bmc-2015-0026
- Weng X, Zhao H, Guan Q, et al. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol. 2021;99(3):274–287. doi: https://doi.org/10.1111/imcb.12405
- Vinken P, Starckx S, Barale-Thomas E, et al. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol Pathol. 2012;40(7):1049–1062. doi: https://doi.org/10.1177/0192623312444765
- Negishi K, Noiri E, Maeda R, et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 2008;73(12):1374–1384. doi: https://doi.org/10.1038/ki.2008.106
- Yokoyama T, Kamijo-Ikemori A, Sugaya T, et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–2106. doi: https://doi.org/10.2353/ajpath.2009.080780
- Katagiri D, Hamasaki Y, Doi K, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int. 2016;89(2):374–385. doi: https://doi.org/10.1038/ki.2015.327
- Rajasundari A, Pays L, Mehlen P, et al. Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. Lab Invest. 2011;91(12):1717–1726. doi: https://doi.org/10.1038/labinvest.2011.126
- Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2008;294(4):F731–738. doi: https://doi.org/10.1152/ajprenal.00507.2007
- Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–939. doi: https://doi.org/10.1164/rccm.201401-0077OC
- Toprak Z, Cebeci E, Helvaci SA, et al. Cisplatin nephrotoxicity is not detected by urinary cell-cycle arrest biomarkers in lung cancer patients. Int Urol Nephrol. 2017;49(6):1041–1047. doi: https://doi.org/10.1007/s11255-017-1556-4
- Schanz M, Hoferer A, Shi J, et al. Urinary TIMP2⋅IGFBP7 for the prediction of platinum-induced acute renal injury. Int J Nephrol Renovasc Dis. 2017;10:175–1181. doi: https://doi.org/10.2147/IJNRD.S135271
- Pajenda S, Ilhan-Mutlu A, Preusser M, et al. NephroCheck data compared to serum creatinine in various clinical settings. BMC Nephrol. 2015;16:206. doi: https://doi.org/10.1186/s12882-015-0203-5
- Tonomura Y, Tsuchiya N, Torii M, et al. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology. 2010;273(1–3):53–59. doi: https://doi.org/10.1016/j.tox.2010.04.015
- Sasaki D, Yamada A, Umeno H, et al. Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers. 2011;16(7):553–566. doi: https://doi.org/10.3109/1354750X.2011.613123
- McDuffie JE, Ma JY, Sablad M, et al. Time course of renal proximal tubule injury, reversal, and related biomarker changes in rats following cisplatin administration. Int J Toxicol. 2013;32(4):251–260. doi: https://doi.org/10.1177/1091581813493013
- Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med. 2013;61(3):564–568. doi: https://doi.org/10.2310/JIM.0b013e31828233a8
- Sohn SJ, Kim SY, Kim HS, et al. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett. 2013;217(3):235–242. doi: https://doi.org/10.1016/j.toxlet.2012.12.015
- Wadey RM, Pinches MG, Jones HB, et al. Tissue expression and correlation of a panel of urinary biomarkers following cisplatin-induced kidney injury. Toxicol Pathol. 2014;42(3):591–602. doi: https://doi.org/10.1177/0192623313492044
- Kuwata K, Nakamura I, Ide M, et al. Comparison of changes in urinary and blood levels of biomarkers associated with proximal tubular injury in rat models. J Toxicol Pathol. 2015;28(3):151–164. doi: https://doi.org/10.1293/tox.2014-0039
- Uchino H, Fujishima J, Fukuoka K, et al. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–640. doi: https://doi.org/10.2131/jts.42.629
- Ewees MG, Messiha BAS, Abo-Saif AA, et al. Interference with coagulation cascade as a novel approach to counteract cisplatin-induced acute tubular necrosis; an experimental study in rats. Front Pharmacol. 2018;9:1155. doi: https://doi.org/10.3389/fphar.2018.01155
- Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: A dialog between the FDA EMEA and predictive safety testing consortium. Nat Biotechnol. 2010;28(5): 455–462. doi: https://doi.org/10.1038/nbt.1625
- Tekce BK, Uyeturk U, Tekce H, et al. Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann Clin Biochem. 2015;52(Pt 1):88–94. doi: https://doi.org/10.1177/0004563214528312
- Hosohata K, Washino S, Kubo T, et al. Early prediction of cisplatin-induced nephrotoxicity by urinary vanin-1 in patients with urothelial carcinoma. Toxicology. 2016;359–360:71–75. doi: https://doi.org/10.1016/j.tox.2016.06.011
- Pianta TJ, Pickering JW, Succar L, et al. Dexamethasone modifies cystatin C-based diagnosis of acute kidney injury during cisplatin-based chemotherapy. Kidney Blood Press Res. 2017;42(1):62–75. doi: https://doi.org/ 10.1159/000469715
- George B, Wen X, Mercke N, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101(4):510–518. doi: https://doi.org/10.1002/cpt.606
- George B, Wen X, Mercke N, et al. Time-dependent changes in kidney injury biomarkers in patients receiving multiple cycles of cisplatin chemotherapy. Toxicol Rep. 2020;7:571–576. doi: https://doi.org/10.1016/j.toxrep.2020.04.003
- Ghonaim E, El-Haggar S, Gohar S. Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial. Med Oncol. 2021;38(9):108. doi: https://doi.org/10.1007/s12032-021-01558-y
- Гречухина К.С., Чеботарева Н.В., Жукова Л.Г., и др. NGAL и KIM-1 — ранние мочевые биомаркеры нефротоксичности, опосредованной цисплатином: обсервационное исследование // Современная онкология. — 2022. — Т. 24. — № 1. — С. 119–124. [Grechukhina KS, Chebotareva NV, Zhukova LG, et al. NGAL and KIM-1 — early urinary biomarkers of nephrotoxicity mediated by cisplatin: Observational study. Sovremennaya onkologia (Journal of Modern Oncology). 2022;24(1):119–124. (In Russ.)] doi: https://doi.org/10.26442/18151434.2022.1.201285
- de Godoy Torso N, Visacri MB, Quintanilha JCF, et al. Assessment of renal function in head and neck cancer patients treated with cisplatin: Different biomarkers and acute kidney injury classifications. Int J Mol Sci. 2022;24(1):141. doi: https://doi.org/10.3390/ijms24010141
- Ibrahim ME, Chang C, Hu Y, et al. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients. Eur J Clin Pharmacol. 2019;75(1):51–57. doi: https://doi.org/10.1007/s00228-018-2552-z