KIM-1 и другие маркеры острого повреждения почек при цисплатин-индуцированной нефротоксичности

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Нефротоксичность — один из главных дозолимитирующх факторов применения цисплатина в противоопухолевой химиотерапии. Ограничения традиционных показателей функционального состояния почек — креатинина и азота мочевины в крови — делают актуальным поиск новых информативных маркеров, которые позволяют на раннем этапе диагностировать цисплатин-индуцированную нефротоксичность с целью адекватного поддержания почечной функции и своевременной коррекции плана лечения. В настоящем обзоре дана общая характеристика биомаркеров острого повреждения почек (ОПП), к которым в этом аспекте сегодня привлечено особое внимание. Представлены экспериментальные и клинические данные последних лет, касающиеся указанных показателей при развитии цисплатин-индуцированного ОПП, с акцентом на одном из наиболее перспективных маркеров — молекуле повреждения почек 1 (kidney injury molecule 1, KIM-1).

Полный текст

Доступ закрыт

Об авторах

Наталья Сергеевна Сергеева

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Email: prognoz.01@mail.ru
ORCID iD: 0000-0001-7406-9973
SPIN-код: 1805-8141

д.б.н., профессор

Россия, Москва

Татьяна Анатольевна Кармакова

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Автор, ответственный за переписку.
Email: kalmar123@yandex.ru
ORCID iD: 0000-0002-8017-5657
SPIN-код: 4364-6134

д.б.н.

Россия, Москва

Виктория Владимировна Савчина

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Email: Savchina_v.v@mail.ru
ORCID iD: 0000-0002-8721-8437
SPIN-код: 1263-7777

врач-химиотерапевт

Россия, Москва

Игорь Игоревич Алентов

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Email: igoralentov@yandex.ru
ORCID iD: 0000-0002-5920-5823
SPIN-код: 9992-7676

к.б.н., старший научный сотрудник

Россия, Москва

Елена Юрьевна Карпенко

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Email: karpenko.elena@inbox.ru
ORCID iD: 0000-0003-3529-5964
SPIN-код: 3196-4925

врач-химиотерапевт

Россия, Москва

Нина Викторовна Маршутина

Московский научно-исследовательский онкологический институт им. П.А. Герцена

Email: nin.mars@mail.ru
ORCID iD: 0000-0003-2997-4936
SPIN-код: 8366-9485

к.б.н., научный сотрудник

Россия, Москва

Андрей Дмитриевич Каприн

Национальный медицинский исследовательский центр радиологии; Российский университет дружбы народов

Email: kaprin@mail.ru
ORCID iD: 0000-0001-8784-8415
SPIN-код: 1759-8101

д.м.н., профессор, академик РАМН

Россия, Москва; Москва

Список литературы

  1. Бурнашева Е.В., Шатохин Ю.В., Снежко И.В., и др. Поражение почек при противоопухолевой терапии // Нефрология. — 2018. — Т. 22. — № 5. — С. 17–24. [Burnasheva EV, Shatokhin YuV, Snezhko IV, et al. Kidney damage during antitumor therapy. Nefrologia (Nephrology). 2018;22(5):17–24. (In Russ.)] doi: https://doi.org/10.24884/1561-6274-2018-22-5-17-24
  2. Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–619. doi: https://doi.org/10.1634/theoncologist.2016-0319
  3. Latcha S, Jaimes EA, Patil S, et al. Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol. 2016;11(7):1173–1179. doi: https://doi.org/10.2215/CJN.08070715
  4. Luft FC. Biomarkers and predicting acute kidney injury. Acta Physiol (Oxf). 2021;231(1):e13479. doi: https://doi.org/ 10.1111/apha.13479
  5. Громова Е.Г., Бирюкова Л.С., Джумабаева Б.Т., и др. Практические рекомендации по коррекции нефротоксичности противоопухолевых препаратов // Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. — 2022. — № 12. — С.144–158. [Gromova EG, Biryukova LS, Dzhumabaeva BT, et al. Practical recommendations for the correction of nephrotoxicity of antitumor drugs. Malignant tumors: Practical recommendations RUSSCO #3s2. 2022;12:144–158. (In Russ.)]. doi: https://doi.org/10.18027 / 2224-5057-2020-10-3s2-46
  6. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;1:1–126.
  7. Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? Transl Res. 2012;159(4):277–289. doi: https://doi.org/10.1016/j.trsl.2012.01.014
  8. McSweeney KR, Gadanec LK, Qaradakhi T, et al. Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mmitigations. Cancers (Basel). 2021;13(7):1572. doi: https://doi.org/10.3390/cancers13071572
  9. Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011. doi: https://doi.org/10.3390/ijms20123011
  10. Veiga-Matos J, Remião F, Motales A. Pharmacokinetics and toxicokinetics roles of membrane transporters at kidney level. J Pharm Pharm Sci. 2020;23:333–356. doi: https://doi.org/10.18433/jpps30865
  11. Mapuskar KA, Steinbach EJ, Zaher A, et al. Mitochondrial superoxide dismutase in cisplatin-induced kidney injury. Antioxidants (Basel). 2021;10(9):1329. doi: https://doi.org/10.3390/antiox10091329
  12. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 2009;61(3):223–242. doi: https://doi.org/10.1016/j.etp.2008.09.003
  13. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15–25. doi: https://doi.org/ 10.1007/s40620-017-0392-z
  14. Bailly V, Zhang Z, Meier W, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277(42):39739–39748. doi: https://doi.org/10.1074/jbc.M200562200
  15. Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–563. doi: https://doi.org/10.1152/ajprenal.00285.2002
  16. Zhang PL, Rothblum LI, Han WK, et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–614. doi: https://doi.org/10.1038/sj.ki.5002697
  17. Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Investig. 2008;118(5):1657–1668. doi: https://doi.org/10.1172/JCI34487
  18. Zhao X, Jiang C, Olufade R, et al. Kidney injury molecule-1 enhances endocytosis of albumin in renal proximal tubular cells. J Cell Physiol. 2016;231(4):896–907. doi: https://doi.org/10.1002/jcp.25181
  19. Balasubramanian S, Jansen M, Valerius MT, et al. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol. 2012;23(4):674–686. doi: https://doi.org/10.1681/ASN.2011070646
  20. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 2015;34(19):2441–2464. doi: https://doi.org/10.15252/embj.201489838
  21. Zhang Z, Cai CX. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem. 2016;416(1–2):109–116. doi: https://doi.org/10.1007/s11010-016-2700-7
  22. Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–130. doi: https://doi.org/10.1146/annurev-nutr-071816-064559
  23. Romejko K, Markowska M, Niemczyk S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int J Mol Sci. 2023;24(13):10470. doi: https://doi.org/10.3390/ijms241310470
  24. Marakala V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury — A systematic review. Clin Chim Acta. 2022;536:135–141. doi: https://doi.org/10.1016/j.cca.2022.08.029
  25. Hvidberg V, Jacobsen C, Strong RK, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–777. doi: https://doi.org/10.1016/j.febslet.2004.12.031
  26. Schrezenmeir EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury — pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017;219(3):554–572. doi: https://doi.org/10.1111/apha.12764
  27. Ghadrdan E, Ebrahimpour S, Sadighi S, et al. Evaluation of urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as biomarkers of renal function in cancer patients treated with cisplatin. J Oncol Pharm Pract. 2020;26(7):1643–1649. doi: https://doi.org/10.1177/1078155220901756
  28. Abdelsalam M, Elmorsy E, Abdelwahab H, et al. Urinary biomarkers for early detection of platinum based drugs induced nephrotoxicity. BMC Nephrol. 2018;19(1):219. doi: https://doi.org/10.1186/s12882-018-1022-2
  29. Ma Q, Devarajan SR, Devarajan P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin. Ren Fail. 2016;38(9):1476–1482. doi: https://doi.org/10.1080/0886022X.2016.1227917
  30. Peacock WF 4th, Maisel A, Kim J, Ronco C. Neutrophil gelatinase associated lipocalin in acute kidney injury. Postgrad Med. 2013;125(6):82–93. doi: https://doi.org/10.3810/pgm.2013.11.2715
  31. Ronco C, Legrand M, Goldstein SL, et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–285. doi: https://doi.org/ 10.1159/000360689
  32. Desai RJ, Kazarov CL, Wong A, et al. Kidney damage and stress biomarkers for early identification of drug-induced kidney injury: A systematic review. Drug Saf. 2022;45(8):839–852. doi: https://doi.org/10.1007/s40264-022-01202-2
  33. Mady LJ, Haleem F, Christakos S. Calcium-buffering proteins: Calbindin. In: Encyclopedia of Biological Chemistry. Elsevier Inc.; 2013. P. 284–289. doi: https://doi.org/10.1016/B978-0-12-378630-2.00228-0
  34. Wu MJ, Lai LW, Lien YH. Cytoprotective effects of calbindin-D(28k) against antimycin-A induced hypoxic injury in proximal tubular cells. Life Sci. 2002;71(5):559–569. doi: https://doi.org/10.1016/s0024-3205(02)01710-1
  35. George B, Szilagyi JT, Joy MS, et al. Regulation of renal calbindin expression during cisplatin-induced kidney injury. J Biochem Mol Toxicol. 2022;36(7):e23068. doi: https://doi.org/10.1002/jbt.23068
  36. Iida T, Fujinaka H, Xu B, et al. Decreased urinary calbindin 1 levels in proteinuric rats and humans with distal nephron segment injuries. Clin Exp Nephrol. 2014;18(3):432–443. doi: https://doi.org/10.1007/s10157-013-0835-3
  37. Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cystatin C: a kidney function biomarker. Adv Clin Chem. 2015;68:57–69. doi: https://doi.org/10.1016/bs.acc.2014.11.007
  38. Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. 2003;70:179–199. doi: https://doi.org/10.1042/bss0700179
  39. Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–230. doi: https://doi.org/10.1053/j.ajkd.2006.04.085
  40. Woo KS, Choi JL, Kim BR, et al. Clinical usefulness of serum cystatin C as a marker of renal function. Diabetes Metab J. 2014;38(4):278–284. doi: https://doi.org/10.4093/dmj.2014.38.4.278
  41. Ichioka D, Kawai K, Tanaka K, et al. Possible risk of overestimation of renal function using cystatin C-based eGFR in testicular cancer survivors treated with cisplatin-based chemotherapy. Clin Exp Nephrol. 2018;22(3):727–734. doi: https://doi.org/10.1007/s10157-017-1474-x
  42. Bodnar L, Wcislo GB, Smoter M, et al. Cystatin C as a parameter of glomerular filtration rate in patients with ovarian cancer. Kidney Blood Press Res. 2010;33(5):360–367. doi: https://doi.org/10.1159/000319097
  43. Cavalcanti E, Barchiesi V, Cerasuolo D, et al. Correlation of serum cystatin C with glomerular filtration rate in patients receiving platinum-based chemotherapy. Anal Cell Pathol (Amst). 2016;2016:4918325. doi: https://doi.org/10.1155/2016/4918325
  44. Lambert M, White-Koning M, Alonso M, et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide. Pediatr Blood Cancer. 2021;68(1):e28747. doi: https://doi.org/10.1002/pbc.28747
  45. Li L, Dong M, Wang XG. The implication and significance of beta 2 microglobulin: A conservative multifunctional regulator. Chin Med J (Engl). 2016;129(4):448–455. doi: https://doi.org/10.4103/0366-6999.176084
  46. Smith LK, He Y, Park JS, et al. ß2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21(8):932–937. doi: https://doi.org/10.1038/nm.3898
  47. Shi C, Zhu Y, Su Y, et al. Beta 2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today. 2009;14(1–2):25–30. doi: https://doi.org/10.1016/j.drudis.2008.11.001
  48. Парилова Н.К., Сергеева Н.С., Маршутина Н.В., и др. Прогностическое значение тимидинкиназы-1 в сравнении с β2-микроглобулином и лактатдегидрогеназой при злокачественных лимфопролиферативных заболеваниях // Клиническая онкогематология. — 2016. — Т. 9. — № 1. — С. 6–12. [Parilova NK, Sergeeva NS, Marshutina NV, et al. Prognostic value of thymidine kinase-1 versus β2-microglobulin and lactate dehydrogenase in malignant lymphoproliferative diseases. Klinicheskaya onkogematologia (Clinical oncohematology). 2016;9(1):6–12. (In Russ.)] doi: https://doi.org/10.21320/2500-2139-2016-9-1-6-12
  49. Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial. 2009; 22(4):378–380. doi: https://doi.org/10.1111/j.1525-139X.2009.00584.x
  50. El-Frargy MS, El-Refaey AM, Eid R, et al. Serum cystatin-C and BETA 2-microglobulin as accurate markers in the early diagnosis of kidney injury in neonates: A single center study. Saudi J Kidney Dis Transpl. 2015;26(4):712–717. doi: https://doi.org/10.4103/1319-2442.160151
  51. Zareifar S, Jafari H, Geramizadeh B, et al. The evaluation of cisplatin effect on tubular function in children on chemotherapy. Pediatr Hematol Oncol. 2013;30(1):18–24. doi: https://doi.org/10.3109/08880018.2012.737093
  52. Lee BS, Lee JH, Kang HG, et al. Ifosfamide nephrotoxicity in pediatric cancer patients. Pediatr Nephrol. 2001;16(10):796–799. doi: https://doi.org/10.1007/s004670100658
  53. Dekkers IA, Blijdorp K, Cransberg K, et al. Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol. 2013;8(6):922–929. doi: https://doi.org/10.2215/CJN.09980912
  54. Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17–24. doi: https://doi.org/10.1016/j.clinbiochem.2018.07.003
  55. Mazzali M, Kipari T, Ophascharoensuk V, et al. Osteopontin — a molecule for all seasons. QJM. 2002;95(1):3–13. doi: https://doi.org/10.1093/qjmed/95.1.3
  56. Jia Q, Huang Z, Wang G, et al. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol. 2022;13:1036423. doi: https://doi.org/10.3389/fphar.2022.1036423
  57. Trostel J, Truong LD, Roncal-Jimenez C, et al. Different effects of global osteopontin and macrophage osteopontin in glomerular injury. Am J Physiol Renal Physiol. 2018;315(4):F759–F768. doi: https://doi.org/10.1152/ajprenal.00458.2017
  58. Xie Y, Sakatsume M, Nishi S, et al. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60(5):1645–1657. doi: https://doi.org/10.1046/j.1523-1755.2001.00032.x
  59. Iguchi S, Nishi S, Ikegame M, et al. Expression of osteopontin in cisplatin-induced tubular injury. Nephron Exp Nephrol. 2004;97(3):e96–105. doi: https://doi.org/10.1159/000078643
  60. Kashiwagi E, Tonomura Y, Kondo C, et al. Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure. Exp Toxicol Pathol. 2014;66(7):301–311. doi: https://doi.org/10.1016/j.etp.2014.04.007
  61. Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, et al. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother. 2021;134:111174. doi: https://doi.org/10.1016/j.biopha.2020.111174
  62. Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts. 2016;7(1):1–15. doi: https://doi.org/10.1515/bmc-2015-0026
  63. Weng X, Zhao H, Guan Q, et al. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol. 2021;99(3):274–287. doi: https://doi.org/10.1111/imcb.12405
  64. Vinken P, Starckx S, Barale-Thomas E, et al. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol Pathol. 2012;40(7):1049–1062. doi: https://doi.org/10.1177/0192623312444765
  65. Negishi K, Noiri E, Maeda R, et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 2008;73(12):1374–1384. doi: https://doi.org/10.1038/ki.2008.106
  66. Yokoyama T, Kamijo-Ikemori A, Sugaya T, et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–2106. doi: https://doi.org/10.2353/ajpath.2009.080780
  67. Katagiri D, Hamasaki Y, Doi K, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int. 2016;89(2):374–385. doi: https://doi.org/10.1038/ki.2015.327
  68. Rajasundari A, Pays L, Mehlen P, et al. Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. Lab Invest. 2011;91(12):1717–1726. doi: https://doi.org/10.1038/labinvest.2011.126
  69. Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2008;294(4):F731–738. doi: https://doi.org/10.1152/ajprenal.00507.2007
  70. Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–939. doi: https://doi.org/10.1164/rccm.201401-0077OC
  71. Toprak Z, Cebeci E, Helvaci SA, et al. Cisplatin nephrotoxicity is not detected by urinary cell-cycle arrest biomarkers in lung cancer patients. Int Urol Nephrol. 2017;49(6):1041–1047. doi: https://doi.org/10.1007/s11255-017-1556-4
  72. Schanz M, Hoferer A, Shi J, et al. Urinary TIMP2⋅IGFBP7 for the prediction of platinum-induced acute renal injury. Int J Nephrol Renovasc Dis. 2017;10:175–1181. doi: https://doi.org/10.2147/IJNRD.S135271
  73. Pajenda S, Ilhan-Mutlu A, Preusser M, et al. NephroCheck data compared to serum creatinine in various clinical settings. BMC Nephrol. 2015;16:206. doi: https://doi.org/10.1186/s12882-015-0203-5
  74. Tonomura Y, Tsuchiya N, Torii M, et al. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology. 2010;273(1–3):53–59. doi: https://doi.org/10.1016/j.tox.2010.04.015
  75. Sasaki D, Yamada A, Umeno H, et al. Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers. 2011;16(7):553–566. doi: https://doi.org/10.3109/1354750X.2011.613123
  76. McDuffie JE, Ma JY, Sablad M, et al. Time course of renal proximal tubule injury, reversal, and related biomarker changes in rats following cisplatin administration. Int J Toxicol. 2013;32(4):251–260. doi: https://doi.org/10.1177/1091581813493013
  77. Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med. 2013;61(3):564–568. doi: https://doi.org/10.2310/JIM.0b013e31828233a8
  78. Sohn SJ, Kim SY, Kim HS, et al. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett. 2013;217(3):235–242. doi: https://doi.org/10.1016/j.toxlet.2012.12.015
  79. Wadey RM, Pinches MG, Jones HB, et al. Tissue expression and correlation of a panel of urinary biomarkers following cisplatin-induced kidney injury. Toxicol Pathol. 2014;42(3):591–602. doi: https://doi.org/10.1177/0192623313492044
  80. Kuwata K, Nakamura I, Ide M, et al. Comparison of changes in urinary and blood levels of biomarkers associated with proximal tubular injury in rat models. J Toxicol Pathol. 2015;28(3):151–164. doi: https://doi.org/10.1293/tox.2014-0039
  81. Uchino H, Fujishima J, Fukuoka K, et al. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–640. doi: https://doi.org/10.2131/jts.42.629
  82. Ewees MG, Messiha BAS, Abo-Saif AA, et al. Interference with coagulation cascade as a novel approach to counteract cisplatin-induced acute tubular necrosis; an experimental study in rats. Front Pharmacol. 2018;9:1155. doi: https://doi.org/10.3389/fphar.2018.01155
  83. Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: A dialog between the FDA EMEA and predictive safety testing consortium. Nat Biotechnol. 2010;28(5): 455–462. doi: https://doi.org/10.1038/nbt.1625
  84. Tekce BK, Uyeturk U, Tekce H, et al. Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann Clin Biochem. 2015;52(Pt 1):88–94. doi: https://doi.org/10.1177/0004563214528312
  85. Hosohata K, Washino S, Kubo T, et al. Early prediction of cisplatin-induced nephrotoxicity by urinary vanin-1 in patients with urothelial carcinoma. Toxicology. 2016;359–360:71–75. doi: https://doi.org/10.1016/j.tox.2016.06.011
  86. Pianta TJ, Pickering JW, Succar L, et al. Dexamethasone modifies cystatin C-based diagnosis of acute kidney injury during cisplatin-based chemotherapy. Kidney Blood Press Res. 2017;42(1):62–75. doi: https://doi.org/ 10.1159/000469715
  87. George B, Wen X, Mercke N, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101(4):510–518. doi: https://doi.org/10.1002/cpt.606
  88. George B, Wen X, Mercke N, et al. Time-dependent changes in kidney injury biomarkers in patients receiving multiple cycles of cisplatin chemotherapy. Toxicol Rep. 2020;7:571–576. doi: https://doi.org/10.1016/j.toxrep.2020.04.003
  89. Ghonaim E, El-Haggar S, Gohar S. Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial. Med Oncol. 2021;38(9):108. doi: https://doi.org/10.1007/s12032-021-01558-y
  90. Гречухина К.С., Чеботарева Н.В., Жукова Л.Г., и др. NGAL и KIM-1 — ранние мочевые биомаркеры нефротоксичности, опосредованной цисплатином: обсервационное исследование // Современная онкология. — 2022. — Т. 24. — № 1. — С. 119–124. [Grechukhina KS, Chebotareva NV, Zhukova LG, et al. NGAL and KIM-1 — early urinary biomarkers of nephrotoxicity mediated by cisplatin: Observational study. Sovremennaya onkologia (Journal of Modern Oncology). 2022;24(1):119–124. (In Russ.)] doi: https://doi.org/10.26442/18151434.2022.1.201285
  91. de Godoy Torso N, Visacri MB, Quintanilha JCF, et al. Assessment of renal function in head and neck cancer patients treated with cisplatin: Different biomarkers and acute kidney injury classifications. Int J Mol Sci. 2022;24(1):141. doi: https://doi.org/10.3390/ijms24010141
  92. Ibrahim ME, Chang C, Hu Y, et al. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients. Eur J Clin Pharmacol. 2019;75(1):51–57. doi: https://doi.org/10.1007/s00228-018-2552-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Биомаркеры острого повреждения почек, ассоциированные с поражением соответствующих отделов нефрона

Скачать (214KB)

© Издательство "Педиатръ", 2024



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах