Antibiotic resistance is a Russia’s most important challenge: scientific and practical aspects, solutions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The problem of antimicrobial resistance (AMR) has become particularly relevant in countries with developed healthcare systems and intensive agriculture over the past 20 years. According to the UN General Assembly on September 22, 2022, antimicrobial resistance (AMR) is already a global problem, causing almost 5 million deaths per year, and by 2050 the annual number of additional deaths worldwide could increase to 10 million persons per year. Currently, to counter the spread of AMR in the world, a partnership of 4 world organizations (WHO, OIE, FAO and UNEP) has been created, leaving the basis for the global concept of “One Health”, which is an integrated, unifying approach aimed at Sustainably balancing and optimizing the health of people, animals and ecosystems. In order to protect the population, the Government of the Russian Federation adopted the “Strategy for preventing the spread of antimicrobial resistance in the Russian Federation for the period until 2030”. The COVID-19 pandemic has impacted the spread of infections caused by multidrug-resistant bacteria worldwide. On the one hand, restrictions and preventive measures introduced in connection with the COVID-19 pandemic, such as reduced travel, distancing, hand hygiene, and environmental treatment, help reduce the spread of infections; on the other hand, the use of antibiotics in patients with COVID-19 is not always justified has exacerbated the public health threat posed by AMR, and as the pandemic progresses throughout the world, the importance of resistance has increased significantly. The resistance of microorganisms to antimicrobial drugs requires improving measures to prevent and limit the spread and circulation of pathogens with antimicrobial resistance, ensuring systemic monitoring of the spread of antimicrobial resistance, and studying the mechanisms of the emergence of antimicrobial resistance.

Full Text

Restricted Access

About the authors

Vladimir I. Starodubov

Russian Research Institute of Health

Author for correspondence.
Email: starodubov@mednet.ru
ORCID iD: 0000-0002-3625-4278
SPIN-code: 7223-9834

MD, PhD, Professor, Academician of the RAS

Россия, Moscow

Valery V. Beregovykh

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570
SPIN-code: 5940-7554

PhD (Technical Sciences), Professor, Academician of the RAS

Россия, Moscow

Vasily G. Akimkin

Central Research Institute of Epidemiology

Email: vgakimkin@yandex.ru
ORCID iD: 0000-0003-4228-9044
SPIN-code: 4038-7455

MD, PhD, Professor, Academician of the RAS

Россия, 3a Novogireevskaya str., 111123, Moscow

Roman S. Kozlov

Smolensk State Medical University

Email: roman.kozlov@antibiotic.ru
ORCID iD: 0000-0001-8728-1113
SPIN-code: 5108-3071

MD, PhD, Professor, Corresponding Member of the RAS

Россия, Smolensk

Alexey V. Tutelyan

Central Research Institute of Epidemiology

Email: bio-tav@yandex.ru
ORCID iD: 0000-0002-2706-6689
SPIN-code: 8150-2230

MD, PhD, Corresponding Member of the RAS

Россия, 3a Novogireevskaya str., 111123, Moscow

Svetlana V. Ugleva

Central Research Institute of Epidemiology

Email: uglevas@bk.ru
ORCID iD: 0000-0002-1322-0155
SPIN-code: 8840-5814

MD, PhD, Professor

Россия, 3a Novogireevskaya str., 111123, Moscow

Stefania Stephani

University of Catania

Email: stefania.stefani@unict.it
ORCID iD: 0000-0003-1594-7427

Professor

Италия, Catania

John Rex

McGovern Medical School

Email: john.rex@amr.solutions
ORCID iD: 0000-0003-3265-5872

Associate Professor of Medicine

США, Houston, Texas

Alexander V. Karaulov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: drkaraulov@mail.ru
ORCID iD: 0000-0002-1930-5424
SPIN-code: 4122-5565

MD, PhD, Professor, Academician of the RAS

Россия, Moscow

Sergey V. Sidorenko

North-Western State Medical University Named after I.I. Mechnikov; Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency

Email: sidorserg@gmail.com
ORCID iD: 0000-0003-3550-7875
SPIN-code: 7738-7060

MD, PhD, Professor

Россия, Saint Petersburg; Saint Petersburg

Matteo Basetti

University Hospital of Sassari, University of Genoa, Policlinico San Martino

Email: matteo.bassetti@unige.it
ORCID iD: 0000-0002-0145-9740

MD, PhD, Professor

Италия, Genoa

Tatyana V. Priputnevich

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov

Email: priput1@gmail.com
ORCID iD: 0000-0002-4126-9730
SPIN-code: 8383-7023

MD, PhD, Professor, Corresponding Member of the RAS

Россия, Moscow

Igor O. Stoma

Gomel State Medical University

Email: igor.stoma@gmail.com
ORCID iD: 0000-0003-0483-7329
SPIN-code: 3791-9646

MD, PhD, Professor

Белоруссия, Gomel

Alexander V. Svidzinsky

University of Berlin Humboldt

Email: alexander.swidsinski@charite.de
ORCID iD: 0000-0002-7071-0417

MD, PhD, Professor

Германия, Berlin

Christian Eckmann

Hanoversch-Münden University Lübeck

Email: c.eckmann@khmue.de
ORCID iD: 0000-0002-4516-0441

MD, PhD

Германия, Lübeck

Alexander I. Tyumentsev

Central Research Institute of Epidemiology

Email: tymencev@cmd.su
ORCID iD: 0000-0003-0537-2586
SPIN-code: 5816-4642

PhD in Biology

Россия, 3a Novogireevskaya str., 111123, Moscow

Marina A. Tyumentseva

Central Research Institute of Epidemiology

Email: tymenceva@cmd.su
ORCID iD: 0000-0002-3145-3702
SPIN-code: 1708-0751

PhD in Biology

Россия, 3a Novogireevskaya str., 111123, Moscow

Anna N. Prelovskaya

Central Research Institute of Epidemiology

Email: prelovskaya@cmd.su
ORCID iD: 0000-0002-2471-3844
Россия, 3a Novogireevskaya str., 111123, Moscow

References

  1. Стратегия предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года. Утверждена распоряжением Правительства РФ от 25 сентября 2017 г. № 2045-р. [Strategiya preduprezhdeniya rasprostraneniya antimikrobnoj rezistentnosti v Rossijskoj Federacii na period do 2030 goda. Utverzhdena rasporyazheniem Pravitel’stva RF ot 25 sentyabrya 2017 g. No. 2045-r. (In Russ.)]
  2. O’Neill J (ed.). Tackling Drug-Resistant Infections Globally: Final Report and Recommen-dations. The Review on Antimicrobial Resistance. 2016. Available from: http://amrreview.org/sites/default/files/160518_Final paper with cover.pdf
  3. Colebrook L. Alexander Fleming (1881—1955). Biographical memoirs of fellows of the royal society; 1956. Vol. 2. P. 117–127.
  4. Кветной И. 30 величайших открытий в истории медицины, которые навсегда изменили нашу жизнь. Жизни ради жизни. Рассказы ученого клоунеля. — М.: АСТ, 2013. — С. 135. [Kvetnoj I. 30 velichajshih otkrytij v istorii mediciny, kotorye navsegda izmenili nashu zhizn’. ZHizni radi zhizni. Rasskazy uchenogo klounelya. Moscow: AST; 2013. S. 135. (In Russ.)]
  5. Справочник по антимикробной терапии. Вып. 3 / под ред. Р.С. Козлова, А.В. Дехнича. — Смоленск: МАКМАХ, 2013. — 480 с. [Spravochnik po antimikrobnoj terapii. Vyp. 3 / pod red. RS Kozlova, AV Dekhnicha. Smolensk: MAKMAH; 2013. 480 p. (In Russ.)].
  6. Информационный бюллетень ВОЗ Концепция «Единое здоровье». 23 октября 2023 г. [Informacionnyj byulleten’ VOZ Koncepciya “Edinoe zdorov’e”. 23 oktyabrya 2023 g. (In Russ.)] Available at: https://www.who.int/ru/news-room/fact-sheets/detail/one-health
  7. Chen HY, Jean SS, Lee YL, et al. Carbapenem-Resistant Enterobacterales in Long-Term Care Facilities: A Global and Narrative Review. Front Cell Infect Microbiol. 2021;11:601968. doi: https://doi.org/10.3389/fcimb.2021.601968
  8. Миронов К.О., Платонов А.Е., Козлов Р.С. Идентификация и серотипирование российских штаммов Streptococcus pneumoniae методом ПЦР // Клиническая микробиология и антимикробная химиотерапия. — 2011. — Т. 13. — № 4. — С. 304–313. [Mironov KO, Platonov AE, Kozlov RS. PCR-based Identification and Serotyping of Russian Streptococcus pneumoniae Strains. Clinical microbiology and antimicrobial chemotherapy. 2011;13(4):304–313. (In Russ.)]
  9. Sidorenko S, Rennert W, Lobzin Y, et al. Multicenter study of serotype distribution of Streptococcus pneumoniae nasopharyngeal isolates from healthy children in the Russian Federation after introduction of PCV13 into the National Vaccination Calendar. Diagn Microbiol Infect Dis. 2020;96(1):114914. doi: https://doi.org/10.1016/j.diagmicrobio.2019.114914
  10. Миронов К.О., Корчагин В.И., Михайлова Ю.В., и др. Характеристика штаммов Streptococcus pneumoniae, выделенных от больных инвазивными пневмококковыми инфекциями, с использованием высокопроизводительного секвенирования // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2020. — Т. 97. — № 2. — С. 113–118. [Mironov KO, Korchagin VI, Mikhailova YV, et al. Characterization of Streptococcus pneumoniae strains causing invasive infections using whole-genome sequencing. Journal of microbiology, epidemiology and immunobiology = Žhurnal mikrobiologii, èpidemiologii i immunobiologii. 2020;97(2):113–118. (In Russ.)] doi: https://doi.org/10.36233/0372-9311-2020-97-2-113-118
  11. Акимкин В.Г., Петров В.В., Красовитов К.В., и др. Молекулярные методы диагностики новой коронавирусной инфекции: сравнение петлевой изотермической амплификации и полимеразной цепной реакции // Вопросы вирусологии. — 2021. — Т. 66. — № 6. — С. 417–424. [Akimkin VG, Petrov VV, Krasovitov KV, et al. Molecular methods for diagnosing novel coronavirus infection: comparison of loop-mediated isothermal amplification and polymerase chain reaction. Problems of Virology (Voprosy Virusologii). 2021;66(6):417–424. (In Russ.)] doi: https://doi.org/10.36233/0507-4088-86
  12. AmpliSens. Available from: https://Www.Amplisens.Ru/Catalog/Geneticheskie-Markery-Antibiotikorezistentnosti
  13. Яковлев С.В., Суворова М.П., Быков А.О. Инфекции, вызванные карбапенеморезистентными энтеробактериями: эпидемиология, клиническое значение и возможности оптимизации антибактериальной терапии // Антибиотики и химиотерапия. — 2020. — № 65. — С. 5–6. [Yakovlev SV, Suvorova MP, Bykov AO. Infections Caused by Carbapenem-Resistant Enterobacterales: Epidemiology, Clinical Significance, and Possibilities for Antibiotic Therapy Optimization. Antibiotics and Chemotherapy. 2020;65:5–6. (In Russ.)] doi: https://doi.org/10.37489/0235-2990-2020-65-5-6-41-69
  14. Тимофеева О.Г., Поликарпова С.В. Локальный микробиологический мониторинг штаммов Enterobacterales, продуцирующих карбапенемазы // Лабораторная служба. — 2019. — Т. 8. — № 3. — С. 14–19. [Timofeeva OG, Polikarpova SV. Local microbiological monitoring of carbapenemases-producing Enterobacterales. Laboratory Service. 2019;8(3):14–19. (In Russ.)] doi: https://doi.org/10.17116/labs2019803114
  15. Козлов Р.С. Резистентность к антимикробным препаратам как реальная угроза национальной безопасности // Русский медицинский журнал. — 2014. — № 4. — С. 321–324. [Kozlov RS. Antimicrobial resistance as a real threat to national security. Russian Medical Journal. 2014;4:321–324. (In Russ.)]
  16. Козлов Р.С. Устойчивость к антибиотикам как одна из основных проблем современного здравоохранения // Вестник Росздравнадзора. — 2017. — № 4. — С. 28–33. [Kozlov RS. Antibiotic resistance as one of serious problems facing the public health today. Bulletin of Roszdravnadzor. 2017;4:28–33. (In Russ.)]
  17. Harris AM, Hicks LA, Qaseem A, et al. Appropriate antibiotic use for acute respiratory tract infection in adults: advice for high-value care from the American college of physicians and the centers for disease control and prevention. Ann Intern Med. 2016;164(6):425–434. doi: https://doi.org/10.7326/M15-1840
  18. Захаренков И.А., Рачина С.А., Козлов Р.С., и др. Потреб-ление системных антибиотиков в России в 2017–2021 гг.: основные тенденции // Клиническая микробиология и антимикробная химиотерапия. — 2022. — Т. 24. — № 3. — С. 220–225. [Zakharenkov IA, Rachina SA, Kozlov RS, et al. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(3):220–225. (In Russ.)] doi: https://doi.org/10.36488/cmac.2022.3.220-225
  19. Временные методические рекомендации «профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 18 (26.10.2023). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/064/610/original/%D0%92%D0%9C%D0%A0_COVID-19_V18.pdf
  20. Припутневич Т.В., Зубков В.В., Трофимов Д.Ю., и др. Эволюция технологий в микробиологии — ключ к формированию новых возможностей надзора и профилактики инфекций в родовспоможении // Вестник РАМН. — Т. 74. — № 6. — С. 364–370. [Priputnevich TV, Zubkov VV, Trofimov DYu, et al. The evolution of technologies in microbiology is the key to creating new opportunities for surveillance and prevention of infections in obstetrics. Annals of the Russian Academy of Medical Sciences. 2019;74(6):364–370. (In Russ.)] doi: https://doi.org/10.15690/vramn1198
  21. Shmakov RG, Prikhodko A, Polushkina E, et al. Clinical course of novel COVID-19 infection in pregnant women. J Matern Fetal Neonatal Med. 2022;35(23):4431–4437. doi: https://doi.org/10.1080/14767058.2020.1850683
  22. Стома И.О. Микробиом в медицине: руководство для врачей. — М.: ГЭОТАР-Медиа, 2020. — 320 с. [Stoma IO. Microbiome in medicine: a guide for doctors. Moscow: GEOTAR-Media; 2020. 320 p. (In Russ.)]
  23. Уголев А.М. Эволюция пищеварения и принципы эволюции функций. Элементы современного функционализма. — Л.: Наука, 1985. — 544 с. [Ugolev AM. The evolution of digestion and the principles of the evolution of functions. Elements of modern functionalism. Leningrad: Nauka; 1985. 544 p. (In Russ.)]
  24. Greenberg EP. The new science of sociomicrobiology and the realm of synthetic and systems ecology. The Science and Applications of Synthetic and Systems Biology: Workshop Summary. Washington, DC: National Academies Press; 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK84461/
  25. March JC, Bentley WE. Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol. 2004;15(5):495–502. doi: https://doi.org/10.1016/j.copbio.2004.08.013
  26. Sorbara MT, Dubin K, Littmann ER, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med. 2019;216(1):84–98. doi: https://doi.org/10.1084/jem.20181639
  27. Salimov UR, Stoma IO, Kovalev AA, et al. Gut microbiota might influence the risk of rejection after liver transplantation. Journal of Liver Transplantation. 2023;9(1):100140. doi: https://doi.org/10.1016/j.liver.2023.100140
  28. Outterson K, Orubu ESF, Rex J, et al. Patient Access in 14 High-Income Countries to New Antibacterials Approved by the US Food and Drug Administration, European Medicines Agency, Japanese Pharmaceuticals and Medical Devices Agency, or Health Canada, 2010–2020. Clin Infect Dis. 2022;74(7):1183–1190. doi: https://doi.org/10.1093/cid/ciab612
  29. Outterson K, Rex J.Global Pull Incentives for Better Antibacterials: The UK Leads the Way, in Applied Health Economics and Health Policy (2023). Available at: https://scholarship.law.bu.edu/faculty_scholarship/3435
  30. Sertkaya A, Euraud J, Birkenbach A, et al. Analytical framework for examining the value of antibacterial products. Report to US DHHS. United States Department of Health and Human Services, 2014. Available at: http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_ antibacterials.cfm
  31. Esposito S, Blasi F, Curtis N, et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics (Basel). 2023;12(4):742. doi: https://doi.org/10.3390/antibiotics12040742
  32. Tiseo G, Brigante G, Giacobbe DR, et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents. 2022;60(2):106611. doi: https://doi.org/10.1016/j.ijantimicag.2022.106611
  33. Bonomo C, Bonacci PG, Bivona DA, et al. Evaluation of the Effects of Heteroaryl Ethylene Molecules in Combination with Antibiotics: A Preliminary Study on Control Strains. Antibiotics (Basel). 2023;12(8):1308. doi: https://doi.org/10.3390/antibiotics12081308
  34. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439. doi: https://doi.org/10.1126/science.aar6245
  35. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442 doi: https://doi.org/10.1126/science.aam9321
  36. Акимкин В.Г., Тюменцев А.И., Тюменцева М.А. Система CRISPR-Cas для выявления гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс B VIM- 2) Pseudomonas aeruginosa в ультранизких концентрациях. Патент РФ № 2743861. Бюл. № 7 от 01.03.2021. [Akimkin VG, Tyumencev AI, Tyumenceva M.A. Sistema CRISPR-Cas dlya vyyavleniya gena antibiotikoustojchivosti blaVIM-2 (metallo-beta-laktamaza klass B VIM-2) Pseudomonas aeruginosa v ul’tranizkih koncentraciyah. Patent RF No. 2743861. Byul. No. 7 ot 01.03.2021. (In Russ.)]
  37. Тюменцев А.И., Тюменцева М.А., Преловская А.Н., и др. Система CRISPR-Cas12 для выявления гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях. Патент РФ № 2782314. Бюл. № 30 от 25.10.2022. [Tyumencev AI, Tyumenceva MA, Prelovskaya AN, i dr. Sistema CRISPR-Cas12 dlya vyyavleniya gena antibiotikoustojchivosti mecA Staphylococcus aureus v ul’tranizkih koncentraciyah. Patent RF No. 2782314. Byul. No. 30 ot 25.10.2022. (In Russ.)]
  38. Тюменцев А.И., Тюменцева М.А., Преловская А.Н., и др. Система CRISPR-Cas12 для выявления гена exoU, кодирующего экзотоксин системы секреции третьего типа, Pseudomonas aeruginosa, в ультранизких концентрациях. Патент РФ № 2791879. Бюл. № 8 от 14.03.2023. [Tyumencev AI, Tyumenceva MA, Prelovskaya AN, i dr. Sistema CRISPR-Cas12 dlya vyyavleniya gena exoU, kodiruyushchego ekzotoksin sistemy sekrecii tret’ego tipa, Pseudomonas aeruginosa, v ul’tranizkih koncentraciyah. Patent RF No. 2791879. Byul. No. 8 ot 14.03.2023. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 "Paediatrician" Publishers LLC