Electrical Instability of the Myocardium in Children and Adolescents

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, there is no doubt that the problem of electrical instability of the myocardium in pediatric cardiology is relevant. The determination of various indicators of electrical instability of the myocardium, which are predictors of life-threatening rhythm disorders and sudden cardiac death, presents an underdeveloped task not only for functional diagnostics specialists, but also for pediatricians, neonatologists, pediatric cardiologists and doctors of other specialties. Non-invasive research methods such as electrocardiography (ECG), Holter ECG monitoring (HM ECG), available in almost all pediatric treatment and prevention institutions, are quite informative in terms of detecting electrophysiological heterogeneity of the myocardium as a predictor of sudden cardiac death, which is especially important in children at risk, as well as young athletes. Thus, the determination of indicators of electrical instability of the myocardium is of great interest, it is a promising direction in modern clinical practice, allowing to predict the risk of developing fatal arrhythmias in children and adolescents.

Full Text

Restricted Access

About the authors

Larisa A. Balykova

National Research Ogarev Mordovia State University

Author for correspondence.
Email: larisabalykova@yandex.ru
ORCID iD: 0000-0002-2290-0013
SPIN-code: 2024-5807

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Marina V. Shirmankina

National Research Ogarev Mordovia State University

Email: shirmankina99@mail.ru
ORCID iD: 0000-0002-9049-5662
SPIN-code: 2141-2903

Clinical Resident

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Stanislav A. Ivyanskiy

National Research Ogarev Mordovia State University

Email: stivdoctor@yandex.ru
ORCID iD: 0000-0003-0087-4421
SPIN-code: 9931-6767

MD, PhD

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Anna V. Krasnopolskaya

National Research Ogarev Mordovia State University

Email: abalykova@gmail.ru
ORCID iD: 0000-0003-3990-9353
SPIN-code: 6033-5816

MD, PhD

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Denis O. Vladimirov

National Research Ogarev Mordovia State University

Email: d.o.vladimirov@yandex.ru
ORCID iD: 0000-0002-2121-8346
SPIN-code: 1070-6203

Post-Graduate Student

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Tatyana S. Shablinova

National Research Ogarev Mordovia State University

Email: Doc.Parshina@yandex.ru
ORCID iD: 0000-0003-4401-8395
SPIN-code: 7409-3568

Post-Graduate Student

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

Evgenia N. Tyagusheva

National Research Ogarev Mordovia State University

Email: evgenia.tyagusheva@yandex.ru
ORCID iD: 0000-0002-1193-3178
SPIN-code: 5039-9934

Student

Russian Federation, 98 Bolshevistskaya str., 430005, Saransk

References

  1. Münkler P, Klatt N, Scherschel K, et al. Repolarization indicates electrical instability in ventricular arrhythmia originating from papillary muscle. Europace. 2023;25(2):688–697. doi: https://doi.org/10.1093/europace/euac126
  2. Vorobiev AP, Vaykhanskaya TG, Melnikova OP, et al. Digital Electrocardiographic System for Assessing Myocardial Electrical Instability: Principles and Applications. Sovrem Tekhnologii Med. 2021;12(6):15–19. doi: https://doi.org/10.17691/stm2020.12.6.02
  3. Karpuz D, Hallıoğlu O, Yılmaz DÇ. Increased microvolt T-wave alternans in children and adolescents with Eisenmenger syndrome. Anatol J Cardiol. 2018;19(5):303–310. doi: https://doi.org/10.14744/AnatolJCardiol.2018.60487
  4. Moghadam EA, Hamzehlou L, Moazzami B, et al. Increased QT Interval Dispersion is Associated with Coronary Artery Involvement in Children with Kawasaki Disease. Oman Med J. 2020;35(1):e88. doi: https://doi.org/10.5001/omj.2020.06
  5. Линяева В.В., Леонтьева И.В., Павлов В.И., и др. Биохимические и электрофизиологические маркеры электрической нестабильности миокарда у детей с гипертрофической кардиомиопатией // Педиатрия им. Г.Н. Сперанского. — 2015. — Т. 94. — № 2. [Linyaeva V.V., Leonteva IV, Pavlov VI, et al. Biochemical and electrophysiological markers of myocardial instability in children with hypertrophic cardiomyopathy. Pediatria n.a. G.N. Speransky. 2015;94(2). (In Russ).]
  6. Takasugi N, Goto H, Takasugi M, et al. Prevalence of Microvolt T-Wave Alternans in Patients with Long QT Syndrome and Its Association with Torsade de Pointes. Circ Arrhythm Electrophysiol. 2016;9(2):e003206. doi: https://doi.org/10.1161/CIRCEP.115.003206
  7. Bagnall RD, Weintraub RG, Ingles J, et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med. 2016;374(25):2441–2452. doi: https://doi.org/10.1056/NEJMoa1510687
  8. Winkel BG, Risgaard B, Sadjadieh G, et al. Sudden cardiac death in children (1–18 years): symptoms and causes of death in a nationwide setting. Eur Heart J. 2014;35(13):868–875. doi: https://doi.org/10.1093/eurheartj/eht509
  9. Макаров Л.Н., Комолятова В.Н., Киселева И.И., и др. Остановки сердца и внезапная смерть детей в школах // Педиатрия им. Г.Н. Сперанского. —2018. — Т. 97. — № 6. — С. 180–186. [Makarov LM, Kiseleva II, Komolyatova VN, et al. Cardiac arrests and sudden death of children in schools. Pediatria n.a. G.N. Speransky. 2018;97(6):180–186. (In Russ.)]
  10. Monda E, Lioncino M, Rubino M, et al. The Risk of Sudden Unexpected Cardiac Death in Children: Epidemiology, Clinical Causes, and Prevention. Heart Fail Clin. 2022;18(1):115–123. doi: https://doi.org/10.1016/j.hfc.2021.07.002
  11. Ackerman M, Atkins DL, Triedman JK. Sudden Cardiac Death in the Young. Circulation. 2016;133(10):1006–1026. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.020254
  12. Chugh SS. Einthoven and electrical risk: Value of the electrocardiogram to predict sudden cardiac death. J Cardiovasc Electrophysiol. 2018;29(1):61–63. doi: https://doi.org/10.1111/jce.13360
  13. Hassanzadeh M, Mardani E, Hosseinpour A, et al. Signal averaged ECG in patients with early repolarization. J Arrhythm. 2021;37(2):432–437. doi: https://doi.org/10.1002/joa3.12523
  14. Duca ȘT, Roca M, Costache AD, et al. T-Wave Analysis on the 24 h Holter ECG Monitoring as a Predictive Assessment of Major Adverse Cardiovascular Events in Patients with Myocardial Infarction: A Literature Review and Future Perspectives. Life (Basel). 2023;13(5):1155. doi: https://doi.org/10.3390/life13051155
  15. Verrier RL, Klingenheben T, Malik M, et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility — consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;58(13):1309–1324. doi: https://doi.org/10.1016/j.jacc.2011.06.029
  16. Merlo M, Pivetta A, Pinamonti B, et al. Long-term prognostic impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: changing mortality over the last 30 years. Eur J Heart Fail. 2014;16(3):317–324. doi: https://doi.org/10.1002/ejhf.16
  17. Östman-Smith I. What Aspects of Phenotype Determine Risk for Sudden Cardiac Death in Pediatric Hypertrophic Cardiomyopathy? J Cardiovasc Dev Dis. 2022;9(5):124. doi: https://doi.org/10.3390/jcdd9050124
  18. Kurl S, Makikallio TH, Rautaharju P, et al. Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. Circulation. 2012;125(21):2588–2594. doi: https://doi.org/10.1161/CIRCULATIONAHA.111.025577
  19. Tikkanen JT, Kentta T, Porthan K, et al. Risk of sudden cardiac death associated with QRS, QTc, and JTc intervals in the general population. Heart Rhythm. 2022;19(8):1297–1303. doi: https://doi.org/10.1016/j.hrthm.2022.04.016
  20. Dao DT, Hollander SA, Rosenthal DN, et al. QRS prolongation is strongly associated with life-threatening ventricular arrhythmias in children with dilated cardiomyopathy. J Heart Lung Transplant. 2013;32(10):1013–1019. doi: https://doi.org/10.1016/j.healun.2013.06.007
  21. Bassareo PP, Mercuro G. QRS Complex Enlargement as a Predictor of Ventricular Arrhythmias in Patients Affected by Surgically Treated Tetralogy of Fallot: A Comprehensive Literature Review and Historical Overview. ISRN Cardiol. 2013;2013:782508. doi: https://doi.org/10.1155/2013/782508
  22. Toukola T, Junttila MJ, Holmström LTA, et al. Fragmented QRS complex as a predictor of exercise-related sudden cardiac death. J Cardiovasc Electrophysiol. 2018;29(1):55–60. doi: https://doi.org/10.1111/jce.13341
  23. Zhao L, Lu J, Cui ZM, et al. Changes in left ventricular synchrony and systolic function in dilated cardiomyopathy patients with fragmented QRS complexes. Europace. 2015;17(11):1712–1719. doi: https://doi.org/10.1093/europace/euu408
  24. Kong Y, Song J, Kang IS, et al. Clinical Implications of Fragmented QRS Complex as an Outcome Predictor in Children with Idiopathic Dilated Cardiomyopathy. Pediatr Cardiol. 2021;42(2):255–263. doi: https://doi.org/10.1007/s00246-020-02473-1
  25. Ferrero P, Piazza I. QRS fragmentation in children with suspected myocarditis: a possible additional diagnostic sign. Cardiol Young. 2020;30(7):962–966. doi: https://doi.org/10.1017/S1047951120001262
  26. Kardys I, Kors JA, van der Meer IM, et al. Spatial QRS-T angle predicts cardiac death in a general population. Eur Heart J. 2003;24(14):1357–1364. doi: https://doi.org/10.1016/s0195-668x(03)00203-3
  27. Luczak-Wozniak K, Obsznajczyk K, Niszczota C, et al. Electrocardiographic Parameters Associated with Adverse Outcomes in Children with Cardiomyopathies. J Clin Med. 2022;11(23):6930. doi: https://doi.org/10.3390/jcm11236930
  28. Богатырева М.М.-Б. Поздние потенциалы желудочков: значимость в клинической практике // Международный журнал сердца и сосудистых заболеваний. — 2018. — Т. 6. — № 20. — С. 4–14. [Bogaty`reva MM-B. Pozdnie potencialy` zheludochkov: znachimost` v klinicheskoj praktike. Mezhdunarodny`j zhurnal serdcza i sosudisty`x zabolevanij. 2018;6(20):4–14. (In Russ.)]
  29. Макаров Л.М. Холтеровское мониторирование. — 4-е изд. — М.: Медпрактика-М, 2017. — 502 с. [Makarov LM. Kholterovskoe monitorirovanie. 4-e izd. Moscow: Medpraktika-M; 2017. 502 р. (In Russ.)]
  30. Zou R, Li Y, Wu L, et al. The ventricular late potentials in children with vasodepressor response of vasovagal syncope. Int J Cardiol. 2016;220:414–416. doi: https://doi.org/10.1016/j.ijcard.2016.06.230
  31. Bobkowski W, Siwińska A, Zachwieja J, et al. A prospective study to determine the significance of ventricular late potentials in children with mitral valvar prolapse. Cardiol Young. 2002;12(4):333–338. doi: https://doi.org/10.1017/s1047951100012920
  32. Corrado D, Zorzi A, Cipriani A, et al. Evolving diagnostic criteria for arrhythmogenic cardiomyopathy. J Am Heart Assoc. 2021;10(18):e021987. doi: https://doi.org/10.1161/JAHA.121.021987
  33. Mellor G, Nelson CP, Robb C, et al. The Prevalence and Significance of the Early Repolarization Pattern in Sudden Arrhythmic Death Syndrome Families. Circ Arrhythm Electrophysiol. 2016;9(6):e003960. doi: https://doi.org/10.1161/CIRCEP.116.003960
  34. Türe M, Balık H, Akın A, et al. The relationship between electrocardiographic data and mortality in children diagnosed with dilated cardiomyopathy. Eur J Pediatr. 2020;179(5):813–819. doi: https://doi.org/10.1007/s00431-020-03569-9
  35. Porthan K, Viitasalo M, Toivonen L, et al. Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. Circ Arrhythm Electrophysiol. 2013;6(4):690–696. doi: https://doi.org/10.1161/CIRCEP.113.000356
  36. Aro AL, Kenttä TV, Huikuri HV. Microvolt T-wave Alternans: Where Are We Now? Arrhythm Electrophysiol Rev. 2016;5(1):37–40. doi: https://doi.org/10.15420/aer.2015.28.1
  37. Alexander ME, Cecchin F, Huang KP, et al. Microvolt t-wave alternans with exercise in pediatrics and congenital heart disease: limitations and predictive value. Pacing Clin Electrophysiol. 2006;29(7):733–741. doi: https://doi.org/10.1111/j.1540-8159.2006.00427.x
  38. Makarov L, Komoliatova V. Microvolt T-wave alternans during Holter monitoring in children and adolescents. Ann Noninvasive Electrocardiol. 2010;15(2):138–144. doi: https://doi.org/10.1111/j.1542-474X.2010.00354.x
  39. Nieminen T, Lehtimaki T, Viik J, et al. T-wave alternans predicts mortality in a population undergoing a clinically indicated exercise test. Eur Heart J. 2007;28(19):2332–2337. doi: https://doi.org/10.1093/eurheartj/ehm271
  40. Quan XQ, Zhou HL, Ruan L, et al. Ability of ambulatory ECG-based T-wave alternans to modify risk assessment of cardiac events: A systematic review. BMC Cardiovasc Disord. 2014;4:198. doi: https://doi.org/10.1186/1471-2261-14-198
  41. Vandael E, Vandenberk B, Vandenberghe J, et al. Risk factors for QTc-prolongation: systematic review of the evidence. Int J Clin Pharm. 2017;39(1):16–25. doi: https://doi.org/10.1007/s11096-016-0414-2
  42. Макаров Л.М. ЭКГ в педиатрии. — 3-е изд. — М.: Медпрактика-М, 2013. — 695 с. [Makarov LM. E`KG v pediatrii. 3-e izd. Moscow: Medpraktika-M; 2013. 695 . (In Russ.)]
  43. Basavarajaiah S, Wilson M, Whyte G, et al. Prevalence and significance of an isolated long QT interval in elite athletes. Eur Heart J. 2007;28(23):2944–2949. doi: https://doi.org/10.1093/eurheartj/ehm404
  44. Corrado D, Pelliccia A, Heidbuchel H, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31(2):243–259. doi: https://doi.org/10.1093/eurheartj/ehp473
  45. Комолятова В.Н., Макаров Л.М., Киселева И.И., и др. Изменение интервала QT в ортостазе — новый диагностический маркер синдрома удлиненного интервала QT // Медицинский алфавит. — 2019. — Т. 2. — № 21. — С. 18–21. [Komolyatova VN, Makarov LM, Kiseleva II, et al. Changing QT interval in orthostasis — new diagnostic marker of syndrome of extended QT interval. Medicinskij alfavit. 2019;2(21):18–21. (In Russ.)] doi: https://doi.org/10.33667/2078-5631-2019-2-21(396)-18-21
  46. Balykova LA, Kotlyarov AA, Ivyanskiy SA, et al. Electrophysiological predictors of sudden cardiac death on physical exercise test in young athletes. Journal of Physics Conference Series. 2017;784(1):012011. doi: https://doi.org/10.1088/1742-6596/784/1/012011
  47. Bazoukis G, Yeung C, Wui Hang Ho R, et al. Association of QT dispersion with mortality and arrhythmic events-A meta-analysis of observational studies. J Arrhythm. 2019;36(1):105–115. doi: https://doi.org/10.1002/joa3.12253
  48. Okin PM, Devereux RB, Howard BV, et al. Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians: The Strong Heart Study. Circulation. 2000;101(1):61–66. doi: https://doi.org/10.1161/01.cir.101.1.61
  49. Chen S, Motonaga KS, Hollander SA, et al. Electrocardiographic repolarization abnormalities and increased risk of life-threatening arrhythmias in children with dilated cardiomyopathy. Heart Rhythm. 2016;13(6):1289–1296. doi: https://doi.org/10.1016/j.hrthm.2016.02.014
  50. Fauchier L, Douglas J, Babuty D, et al. QT dispersion in nonischemic dilated cardiomyopathy. A long-term evaluation. Eur J Heart Fail. 2005;7(2):277–282. doi: https://doi.org/10.1016/j.ejheart.2004.07.009
  51. Calò L, Lanza O, Crescenzi C, et al. The value of the 12-lead electrocardiogram in the prediction of sudden cardiac death. Eur Heart J Suppl. 2023;25(SupplC):C218–C226. doi: https://doi.org/10.1093/eurheartjsupp/suad023
  52. Zareba W, Bayes de Luna A. QT dynamics and variability. Ann Noninvasive Electrocardiol. 2005;10(2):256–262. doi: https://doi.org/10.1111/j.1542-474X.2005.10205.x
  53. Makarov L, Komoliatova V, Zevald S, et al. QT dynamicity, microvolt T-wave alternans, and heart rate variability during 24-hour ambulatory electrocardiogram monitoring in the healthy newborn of first to fourth day of life. J Electrocardiol. 2010;43(1):8–14. doi: https://doi.org/10.1016/j.jelectrocard.2009.11.001
  54. Макарова В.А., Леонтьева И.В. Турбулентность ритма сердца у детей с гипертрофической кардиомиопатией как маркер электрической нестабильности миокарда // Росcийский вестник перинатологии и педиатрии. — 2014. — № 4. — С. 64–68. [Makarova VA, Leontieva IV. Heart rate turbulence as a marker of myocardial electrical instability in children with hypertrophic cardiomyopathy. Rossijskij vestnik perinatologii i pediatrii. 2014;4:64–68. (In Russ.)]
  55. Tiwari R, Kumar R, Malik S, et al. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr Cardiol Rev. 2021;17(5):e160721189770. doi: https://doi.org/10.2174/1573403X16999201231203854
  56. Hillebrand S, Gast KB, de Mutsert R, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace. 2013;15(5):742–749. doi: https://doi.org/10.1093/europace/eus341
  57. Eyre EL, Duncan MJ, Birch SL, et al. The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton Neurosci. 2014;186:8–21. doi: https://doi.org/10.1016/j.autneu.2014.09.019
  58. Farah BQ, Andrade-Lima A, Germano-Soares AH, et al. Physical activity and heart rate variability in adolescents with abdominal obesity. Pediatr Cardiol. 2018;39(3):466–472. doi: https://doi.org/10.1007/s00246-017-1775-6
  59. Ling N, Li CL, Wang ZZ, et al. Heart rate variability in children with myocarditis presenting with ventricular arrhythmias. Eur Rev Med Pharmacol Sci. 2018;22(4):1102–1105. doi: https://doi.org/10.26355/eurrev_201802_14397
  60. Limongelli G, Miele T, Pacileo G, et al. Heart rate variability is a weak predictor of sudden death in children and young patients with hypertrophic cardiomyopathy. Heart. 2007;93(1):117–118. doi: https://doi.org/10.1136/hrt.2005.087338
  61. Мельникова И.Ю., Токарева Ю.А. Индекс «электрической добротности сердца» позволяет спрогнозировать степень риска фатальных кардиогенных состояний у детей и подростков // Экспериментальная и клиническая гастроэнтерология. — 2021. — Т. 185. — № 1. — С. 150–154. [Melnikova IYu, Tokarevа YuA. The index of “electrical quality of the heart” allows predicting the degree of risk of fatal cardiogenic conditions in children and adolescents. Experimental and Clinical Gastroenterology. 2021;185(1):150–154. (In Russ.)] doi: https://doi.org/10.31146/1682-8658-ecg-185-1-150-154

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Decreased QRS amplitude in a child with myocarditis

Download (161KB)
3. Fig.2. Fragmented QRS (fQRS)

Download (43KB)
4. Fig.3. Epsilon wave

Download (60KB)
5. Fig.4. The phenomenon of early ventricular repolarization in a healthy teenager

Download (145KB)
6. Fig.5. ECG of a child with prolongation of the QTc interval (QTc 469 ms)

Download (159KB)

Copyright (c) 2024 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies