Modern Tendencies of the Use and Development of Drugs of Bacteriophages

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article discusses the main uses of bacteriophages as an alternative or supplement to antibiotic therapy. The authors characterize the drugs of bacteriophages and perfume and cosmetic products containing bacteriophages presented on the pharmaceutical market of the Russian Federation. Prospects and algorithms for the extemporal manufacture of medicinal forms with bacteriophages for personalized therapy, developed in countries of Europe, USA, China, Russian Federation are considered. The analysis of scientific publications on the main international databases shows the interest of the developers in the problem of the creation of new bacteriophages preparations with stable titer in different medicinal forms for routes of medication administration. One of the problems of pharmaceutical development of such products is the insufficient regulatory framework. It was noted that for the first time in the State Pharmacopoeia of the Russian Federation a general pharmacopaedic article “Bacteriophages medicinal-prophylactic” and private pharmacopaedic articles about the main bacteriophages and their cocktails produced by the Russian industry were introduced. It has been shown that expansion of the range of medicinal forms and ways of introducing bacteriophages, extemporal manufacture of effective and stable preparations along with their industrial production — an attainable task.

Full Text

Restricted Access

About the authors

Elena O. Bakhrushina

Sechenov First Medical University

Author for correspondence.
Email: bachrauschenh@mail.ru
ORCID iD: 0000-0001-8695-0346
SPIN-code: 9537-1297

PhD in Pharmaceutical Sciences

Russian Federation, 13/1, Nikitsky blvd, 119019

Maria N. Anurova

Sechenov First Medical University; Moscow Research Institute of Epidemiology and Microbiology G.N. Gabrichevsky Rospotrebnadzor

Email: amn25@yandex.ru
ORCID iD: 0000-0002-7649-9616
SPIN-code: 9709-7507

PhD in Pharmaceutical Sciences

Russian Federation, 13/1, Nikitsky blvd, 119019, Moscow; Moscow

Andrey V. Aleshkin

Moscow Research Institute of Epidemiology and Microbiology G.N. Gabrichevsky Rospotrebnadzor

Email: andreialeshkin@googlemail.com
ORCID iD: 0000-0002-0532-1378
SPIN-code: 2224-7471

PhD in Biology, Professor

Russian Federation, Moscow

Natalia B. Demina

Sechenov First Medical University

Email: nbd217@mail.ru
ORCID iD: 0000-0003-4307-8791

PhD in Pharmaceutical Sciences, Professor

Russian Federation, 13/1, Nikitsky blvd, 119019, Moscow

Ivan I. Krasnyuk

Sechenov First Medical University

Email: krasnyuki@mail.ru
ORCID iD: 0000-0002-7242-2988

PhD in Pharmaceutical Sciences, Professor

Russian Federation, 13/1, Nikitsky blvd, 119019, Moscow

Natalia V. Pyatigorskaya

Sechenov First Medical University

Email: osipova-mma@list.ru
ORCID iD: 0000-0003-4901-4625
SPIN-code: 8128-1725

PhD in Pharmaceutical Sciences, Professor, RAS expert

Russian Federation, 13/1, Nikitsky blvd, 119019

Valery V. Beregovykh

Sechenov First Medical University; Russian Academy of Sciences

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570
SPIN-code: 5940-7554

PhD in Technical Sciences, Professor, Academician of the RAS

Russian Federation, 13/1, Nikitsky blvd, 119019, Moscow; Moscow

References

  1. Делягин В.М. Бактериофаготерапия на современном этапе // РМЖ. — 2015. — Т. 23. — № 3. — С. 132–136. [Delyagin VM. Bakteriofagoterapiya na sovremennom etape. RMJ. 2015;23(3):132–136. (In Russ.)]
  2. Рациональное применение бактериофагов в лечебной и противоэпидемической практике: федеральные клинические рекомендации. — М.; 2014. — 40 с. [Ratsional’noe primenenie bakteriofagov v lechebnoi i protivoepidemicheskoi praktike: Federal clinical guidelines. Moscow; 2014. 39 p.]
  3. Фаги атакуют. Отечественная история производства и применения бактериофагов. [Fagi atakuyut. Otechestvennaya istoriya proizvodstva i primeneniya bakteriofagov. (In Russ.)] Available from: https://yandex.ru/turbo?text=https%3A%2F%2Fscfh.ru%2Fpapers%2Ffagi-atakuyut%2F (аccessed: 02.05.2020).
  4. Алешкин А.В., Селькова Е.П., Ершова О.Н., и др. Концепция персонализированной фаготерапии пациентов отделения реанимации и интенсивной терапии, страдающих инфекциями, связанными с оказанием медицинской помощи // Фундаментальная и клиническая медицина. — 2018. — Т. 3. — № 2. — С. 66–74. [Aleshkin AV, Sel’kova EP, Ershova ON, et al. Concept of personalized phage therapy for intensive care unit patients with healthcare-associated infections. Fundamental and Clinical Medicine. 2018;3(2):66–74. (In Russ.)] doi: https://doi.org/10.23946/2500-0764-2018-3-2-66-74
  5. Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet. 2019;19(1):35–45. doi: https://doi.org/10.1016/S1473-3099(18)30482-1
  6. Huang G, Wei Z, Wang D. What do we lean from the “PhagoBurn” project. Burns. 2019;45(1):260. doi: https://doi.org/10.1016/j.burns.2018.11.008
  7. Cui Z, Guo X, Feng T, Li L. Exploring the whole standard operating procedure for phage therapy in clinical practice. J Transl Med. 2019;17(1):373. doi: https://doi.org/10.1186/s12967-019-2120-z
  8. Pirnay JP, Verbeken G, Ceyssens PJ, et al. The Magistral Phage. Viruses. 2018;10(2):E64. doi: https://doi.org/10.3390/v10020064
  9. Rubalskii E, Aleshkin A, Kühn C, et al. Three cases of ultima ratio bacteriophage therapy in the clinic for cardiothoracic, transplantation and vascular surgery. 1st German Phage Symposium (Stuttgart, Germany, October, 9–11, 2017): Program and Abstract Book. Stuttgart; 2017. Р. 92.
  10. Gangwar M, Rastogi S, Singh D, et al. Study on the Effect of Oral Administration of Bacteriophages in Charles Foster Rats With Special Reference to Immunological and Adverse Effects. Front Pharmacol. 2021;12:615445. doi: https://doi.org/10.3389/fphar.2021.615445
  11. Ковязина Н.А. Разработка и стандартизация таблеток Секстафаг®: автореф. дис. … канд. фарм. наук. — Пермь; 2009. — 25 с. [Kovyazina NA. Razrabotka i standartizatsiya tabletok Sextaphag®. [abstract of dissertation]. Perm’; 2009. 25 p. (In Russ.)]
  12. Vinner GK, Richards K, Leppanen M, et al. Microencapsulation of Enteric Bacteriophages in a pH-Responsive Solid Oral Dosage Formulation Using a Scalable Membrane Emulsification Process. Pharmaceutics. 2019;11(9):475. doi: https://doi.org/10.3390/pharmaceutics11090475
  13. Vinner GK, Rezaie-Yazdi Z, Leppanen M, et al. Microencapsulation of Salmonella-Specific Bacteriophage Felix O1 Using Spray-Drying in a pH-Responsive Formulation and Direct Compression Tableting of Powders into a Solid Oral Dosage Form. Pharmaceuticals (Basel). 2019;12(1):43. doi: https://doi.org/10.3390/ph12010043
  14. Vinner GK, Malik DJ. High precision microfluidic microencapsulation of bacteriophages for enteric delivery. Res Microbiol. 2018;169(9):522–530. doi: https://doi.org/10.1016/j.resmic.2018.05.011
  15. Ковязина Н.А., Функнер Е.В., Николаева А.М., и др. Технологические аспекты разработки капсул с бактериофагами // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. — 2015. — № 1. — С. 132–136. [Kovyazina NA, Funkner EV, Nikolaeva AM, et al. Technological aspects of development capsule with bacteriophages. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2015;(1):132–136. (In Russ.)]
  16. Shi Z, Li SK, Charoenputtakun P, et al. RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels. J Control Release. 2018;270:14–22. doi: https://doi.org/10.1016/j.jconrel.2017.11.028
  17. Richards K, Malik DJ. Microencapsulation of Bacteriophages Using Membrane Emulsification in Different pH-Triggered Controlled Release Formulations for Oral Administration. Pharmaceuticals (Basel). 2021;14(5):424. doi: https://doi.org/10.3390/ph14050424
  18. Hsu BB, Plant IN, Lyon L, et al. In situ reprogramming of gut bacteria by oral delivery Nat Commun. 2020;11:5030. doi: https://doi.org/10.1038/s41467-020-18614-2
  19. Cuomo P, Papaianni M, Fulgione A, et al. An Innovative Approach to Control H. pylori-Induced Persistent Inflammation and Colonization. Microorganisms. 2020;8(8):1214. doi: https://doi.org/10.3390/microorganisms8081214
  20. Morello E, Saussereau E, Maura D, et al. Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention. PLoS One. 2011;(2):e16963. doi: https://doi.org/10.1371/journal.pone.0016963
  21. Chang RYK, Wallin M, Kutter E, et al. Storage stability of inhalable phage powders containing lactose at ambient conditions. Int J Pharm. 2019;560:11–18. doi: https://doi.org/10.1016/j.ijpharm.2019.01.050
  22. Chang RY, Wong J, Mathai A, et al. Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. Eur J Pharm Biopharm. 2017;121:1–13. doi: https://doi.org/10.1016/j.ejpb.2017.09.002
  23. Golshahi L, Seed KD, Dennis JJ, Finlay WH. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex. J Aerosol Med Pulm Drug Deliv. 2008;21(4):351–360. doi: https://doi.org/10.1089/jamp.2008.0701
  24. Prazak J, Valente L, Iten M, et al. Nebulized Bacteriophages for Prophylaxis of Experimental Ventilator-Associated Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. Crit Care Med. 2020;48(7):1042–1046. doi: https://doi.org/10.1097/CCM.0000000000004352
  25. Semler DD, Goudie AD, Finlay WH, Dennis JJ. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrob Agents Chemother. 2014;58(7):4005–4013. doi: https://doi.org/10.1128/AAC.02388-13
  26. Leung SSY, Carrigy NB, Vehring R, et al. Jet nebulization of bacteriophages with different tail morphologies — Structural effects. Int J Pharm. 2019;554:322–326. doi: https://doi.org/10.1016/j.ijpharm.2018.11.026
  27. Astudillo A, Leung SSY, Kutter E, et al. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm. 2018;125:124–130. doi: https://doi.org/10.1016/j.ejpb.2018.01.010
  28. Cheng M, Zhang L, Zhang H, et al. An Ointment Consisting of the Phage Lysin LysGH15 and Apigenin for Decolonization of Methicillin-Resistant Staphylococcus aureus from Skin Wounds. Viruses. 2018;10(5):244. doi: https://doi.org/10.3390/v10050244
  29. Brown TL, Thomas T, Odgers J, et al. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria. J Pharm Pharmacol. 2017;69(3):244–253. doi: https://doi.org/10.1111/jphp.12673
  30. Esteban PP, Alves DR, Enright MC, et al. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions. Biotechnol Prog. 2014;30(4):932–944. doi: https://doi.org/10.1002/btpr.1898
  31. Kaur P, Gondil VS, Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm. 2019;572:118779. doi: https://doi.org/10.1016/j.ijpharm.2019.118779
  32. Jikia D, Chkhaidze N, Imedashvili E, et al. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol. 2005;30(1):23–26. doi: https://doi.org/10.1111/j.1365-2230.2004.01600.x
  33. Campos WF, Silva EC, Oliveira TJ, et al. Transdermal permeation of bacteriophage particles by choline oleate: potential for treatment of soft-tissue infections. Future Microbiol. 2020;15:881–896. doi: https://doi.org/10.2217/fmb-2019-0290
  34. Ferry T, Batailler C, Petitjean C, et al. The Potential Innovative Use of Bacteriophages Within the DAC® Hydrogel to Treat Patients With Knee Megaprosthesis Infection Requiring “Debridement Antibiotics and Implant Retention” and Soft Tissue Coverage as Salvage Therapy. Front Med (Lausanne). 2020;7:342. doi: https://doi.org/10.3389/fmed.2020.00342
  35. Brown TL, Petrovski S, Hoyle D, et al. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca. PLoS One. 2017;12(8):e0183510. doi: https://doi.org/10.1371/journal.pone.0183510
  36. Бочкарева С.С., Караулов А.В., Алешкин А.В., и др. Изучение фармакокинетики суппозиторных форм препаратов бактериофагов // Бюллетень экспериментальной медицины и биологии. — 2019. — Т. 168. — № 12. — С. 707–711. [Bochkareva SS, Karaulov AV, Aleshkin AV, et al. The pharmacokinetics of the suppository formulations of bacteriophages. Bulletin of Experimental Biology and Medicine. 2019;168(12):707–711. (In Russ.)]
  37. Анурова М.Н., Бахрушина Е.О., Демина Н.Б., и др. Разработка термореверсивного вагинального геля с бактериофагами // Биофармацевтический журнал. — 2019. — Т. 11. — № 2. — С. 30–33. [Anurova MN, Bakhrushina EO, Demina NB, et al. The development of thermoreversible vaginal gel with bacteriophages. Russian Journal of Biopharmaceuticals. 2019;11(2):30–33. (In Russ.)]
  38. Alfadhel M, Puapermpoonsiri U, Ford SJ, et al. Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: in vitro evaluation. Int J Pharm. 2011;416(1):280–287. doi: https://doi.org/10.1016/j.ijpharm.2011.07.006
  39. Fadlallah A, Chelala E, Legeais JM. Corneal Infection Therapy with Topical Bacteriophage Administration. Open Ophthalmol J. 2015;9:167–168. doi: https://doi.org/10.2174/1874364101509010167
  40. Kishimoto T, Ishida W, Fukuda K, et al. Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother. 2019;63(11):e01088-19. doi: https://doi.org/10.1128/AAC.01088-19
  41. Leung SSY, Parumasivam T, Gao FG, et al. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int J Pharm. 2017;521(1–2):141–149. doi: https://doi.org/10.1016/j.ijpharm.2017.01.060
  42. El Haddad L, Lemay MJ, Khalil GE, et al. Microencapsulation of a Staphylococcus phage for concentration and long-term storage. Food Microbiol. 2018;76:304–309. doi: https://doi.org/10.1016/j.fm.2018.06.002
  43. Barros JAR, Melo LDR, Silva RARD, et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine. 2020;24:102145. doi: https://doi.org/10.1016/j.nano.2019.102145

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies