Free radical reactions in socially significant infectious diseases: HIV infection, hepatitis, tuberculosis

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The analysis of current literature data on the study of the features of the course of free-radical reactions, as well as the state of the antioxidant defense system at socially significant infectious diseases — HIV infection, hepatitis, tuberculosis was carried out. The role of this kind of reaction in the genesis and progression of socially significant infections a long time has been studied. Foreign studies of recent years have been focused on the identification of specific markers of oxidative and carbonyl stress, which make it possible to identify the redox imbalance of the cell under conditions of infection and target affect it to modulate the activity of the main transcription factors of viral proteins and the bacteria pathogenicity. Numerous sources indicate the involvement of active oxygen metabolites in a wide range of events in infected cells and tissues, including neoplastic transformation processes. These biochemical markers can be used as additional criteria for monitoring the progression of infection. At the same time, noticeable gaps in this area there are that may become the goal of future research. The issues of changing free radical reactions depending on gender, age, place of residence of patients remain practically unstudied. There is little data about intensity of oxidative stress in patients of reproductive age with HIV, hepatitis B and C, and pulmonary tuberculosis, as well as the relationship of antioxidant deficiency with reproductive disorders in conditions of infection. These data could serve as the basis for the development of pathogenetically substantiated methods for the correction of socially significant infectious diseases. Modulation of the production of reactive oxygen metabolites and oxidative stress is a potentially new pharmacological approach to reduce the effects of viral and bacterial exposure.


Full Text

Restricted Access

About the authors

Marina A. Darenskaya

Scientific Centre for Family Health and Human Reproduction Problems

Author for correspondence.
Email: marina_darenskaya@inbox.ru
ORCID iD: 0000-0003-3255-2013
SPIN-code: 3327-4213

Russian Federation, 16 Timiryazeva str., 664003, Irkutsk

PhD

Lubov I. Kolesnikova

Scientific Centre for Family Health and Human Reproduction Problems

Email: kolesnikova20121@mail.ru
ORCID iD: 0000-0003-3354-2992
SPIN-code: 1584-0281

Russian Federation, Irkutsk

MD, PhD, Professor

Sergey I. Kolesnikov

Scientific Centre for Family Health and Human Reproduction Problems

Email: sikolesnikov2012@gmail.com
ORCID iD: 0000-0003-2124-6328
SPIN-code: 1752-6695

Russian Federation, Irkutsk

MD, PhD, Professor

References

  1. Манина В.В., Старшинова А.А., Пантелеев А.М. Туберкулез и ВИЧ-инфекция: эпидемическая ситуация в России и в мире за последние десять лет, особенности выявления и диагностики // ВИЧ-инфекция и иммуносупрессии. — 2018. — Т. 9. — № 4. — C. 7–16. doi: 10.22328/2077-9828-2017-9-4-7-16. [Manina VV, Starshinova AA, Panteleev AM. Tuberculosis and HIV infection: the epidemic situation in Russia and in the world over the past ten years, features of detection and diagnosis. HIV Infection and Immunosuppressive Disorders. 2018;9(4):7–16. (In Russ.)]
  2. Антипова А.В., Емельянов В.В., Жильцова А.В., Козлова М.Л. Анализ распространенности ВИЧ-инфекции в России // Научный альманах. — 2019. — Т. 12. — № 3. — С. 87–89. [Antipova AV, Emel’yanov VV, ZHil’cova AV, Kozlova ML. HIV prevalence analysis in Russia. Science Almanac. 2019;12(3):87–89. (In Russ).]
  3. Колесникова Л.И., Даренская М.А., Колесников С.И. Свободнорадикальное окисление: взгляд патофизиолога // Бюллетень сибирской медицины. — 2017. — Т. 16. — № 4. — С. 16–29. doi: 10.20538/1682-0363-2017-4-16-29. [Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: a pathophysiologist’s view. Bulletin of Siberian Medicine. 2017;16(4):16–29. (In Russ.)]
  4. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 2017;17:608–620. doi: 10.1038/nri.2017.66.
  5. Пинегин Б.В., Воробьева Н.В., Пащенков М.В., Черняк Б.В. Роль митохондриальных активных форм кислорода в активации врожденного иммунитет // Иммунология. — 2018. — Т. 39. — № 4. — С. 221–229. doi: 10.18821/0206-4952-2018-39-4-221-229. [Pinegin BV, Vorob’yova NV, Pashchenkov MV, Chernyak BV. The role of mitochondrial reactive oxygen species in the activation of innate immunity. Immunology. 2018;39(4):221–229. (In Russ.)]
  6. Sandhir R, Halder A, Sunkaria A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim. Biophys. Acta. 2017;1863:1090–1097. doi: 10.1016/j.bbadis.2016.10.020.
  7. Choudhury G, MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2017;14(1):122–135. doi: 10.1080/15412555.2016.1214948.
  8. Ivanov AV, Valuev-Elliston VT, Ivanova ON, et al. Oxidative stress during HIV infection: mechanisms and consequences. Oxidative Medicine and Cellular Longevity. 2016. doi: 10.1155/2016/8910396.
  9. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
  10. ВИЧ-инфекция у взрослых: клинические рекомендации / Национальная ассоциация специалистов по профилактике, диагностике и лечению ВИЧ-инфекции. — М.: Министерство здравоохранения; 2019. — 212 с. [VICH-infekciya u vzroslyh: klinicheskie rekomendacii Nacional’naya associaciya specialistov po profilaktike, diagnostike i lecheniyu VICH-infekcii. Moskwa, Ministerstvo zdravoohraneniya, 2019, 212 s. (In Russ.)]
  11. Nsonwu-Anyanwu AC, Ighodalo EV, King D, et al. Biomarkers of oxidative stress in HIV seropositive individuals on highly active antiretroviral therapy. Reactive Oxygen Species. 2017;3(9):197–207. doi: 10.20455/ros.2017.827.
  12. Kashou AH, Agarwal A. Oxidants and antioxidants in the pathogenesis of HIV/AID. The Open Reproductive Science Journal. 2011;3(1). doi: 10.2174/1874255601103010154.
  13. Bhaskar A, Munshi M, Khan SZ, et al. Measuring glutathione redox potential of HIV-1-infected macrophages. The Journal of Biological Chemistry. 2015;290(2):1020–1038. doi: 10.1074/jbc.M114.588913.
  14. Couret J, Chang TL. Reactive oxygen species in HIV infection. EC microbiology. 2016;3(6):597.
  15. Hensley-McBain T, Klatt NR. The dual role of neutrophils in HIV infection. Current HIV/AIDS Reports. 2018;15(1):1–10. doi: 10.1007/s11904-018-0370-7.
  16. Masiá M, Padilla S, Fernández M, et al. Oxidative stress predicts all-cause mortality in HIV-infected patients. PloS One. 2016;11(4):e0153456. doi: 10.1371/journal.pone.0153456.
  17. Williams ME, Zulu SS, Stein DJ, et al. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiology of Disease. 2019.104701. doi: 10.1016/j.nbd.2019.104701.
  18. Shah S, Maric D, Denaro F, et al. Nitrosative stress is associated with dopaminergic dysfunction in the HIV-1 transgenic Rat. The American Journal of Pathology. 2019;189(7):1375–1385. doi: 10.1016/j.ajpath.2019.03.004.
  19. Kolgiri V, Nagar V, Patil, V. Association of metabolic syndrome and oxidative DNA damage in HIV/AIDS patients. Indian Journal of Clinical Biochemistry. 2018;33(3):273–281. doi: 10.1007/s12291-017-0670-5.
  20. Sacktor N, Miyahara S, Evans S, et al. Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV-seropositive individuals with cognitive impairment. Journal of Neurovirology. 2014;20(6):620–626. doi: 10.1007/s13365-014-0292-0.
  21. Djigma F, Sorgho P, Soubeiga S, et al. Role of glutathione S-transferase (GSTM1 and GSTT1) genes deletion in susceptibility to HIV-1 disease progression. Journal of Biosciences and Medicines. 2020;8:41–54. doi: 10.4236/jbm.2020.82004.
  22. Kuleape JA, Tagoe EA, Puplampu P, et al. Homozygous deletion of both GSTM1 and GSTT1 genes is associated with higher CD4+ T cell counts in Ghanaian HIV patients. PloS One. 2018;13(5). doi: 10.1371/journal.pone.0195954.
  23. Coco-Bassey SB, Asemota EA, Okoroiwu HU, et al. Glutathione, glutathione peroxidase and some hematological parameters of HIV-seropositive subjects attending clinic in University of Calabar teaching hospital, Calabar, Nigeria. BMC Infect Dis. 2019;19:944. doi: 10.1186/s12879-019-4562-6.
  24. Teskey G, Abrahem R, Cao R, et al. Glutathione as a marker for human disease. Advances in Clinical Chemistry. 2018;87:141–159. doi: 10.1016/bs.acc.2018.07.004.
  25. Tinkov AA, Bjørklund G, Skalny AV, et al. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cellular and Molecular Life Sciences. 2018;75(9):1567–1586. doi: 10.1007/s00018-018-2745-8.
  26. Lundberg M, Mattsson Å, Reiser K, et al. Inhibition of the thioredoxin system by PX-12 (1-methylpropyl 2-imidazolyl disulfide) impedes HIV-1 infection in TZM-bl cells. Sci Rep. 2019;9:5656. doi: 10.1038/s41598-019-42068-2.
  27. Watson WH, Ritzenthaler JD, Peyrani P, et al. Plasma cysteine/cystine and glutathione/glutathione disulfide redox potentials in HIV and COPD patients. Free Radical Biology and Medicine. 2019;143:55–61. doi: 10.1016/j.freeradbiomed.2019.07.031.
  28. Ahmadi-Motamayel F, Vaziri-Amjad S, Goodarzi MT, et al. Evaluation of salivary vitamin C and catalase in HIV positive and healthy HIV negative control group. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2017;17(2):101–105. doi: 10.2174/1871526517666170116142547.
  29. Preedy VR, Watson RR. (еds). HIV/AIDS: oxidative stress and dietary antioxidants. Academic Press; 2017.
  30. Williams AA, Sitole LJ, Meyer D. HIV/HAART-associated oxidative stress is detectable by metabonomics. Molecular BioSystems. 2017;13(11):2202–2217. doi: 10.1039/C7MB00336F.
  31. Camini FC, da Silva Caetano CC, Almeida LT, et al. Implications of oxidative stress on viral pathogenesis. Archives of Virology. 2017;162(4):907–917. doi: 10.1007/s00705-016-3187-y.
  32. Quaye O, Kuleape JA, Bonney EY, et al. Imbalance of antioxidant enzymes activities and trace elements levels in Ghanaian HIV-infected patients. PloS One. 2019;14(7): e0220181. doi: 10.1371/journal. pone.0220181.
  33. Gravier-Hernández R, Gil-del Valle L, Valdes-Alonso L, et al. Oxidative stress in hepatitis C virus-human immunodeficiency virus co-infected patients. Annals of Hepatology. 2020;19(1):92–98. doi: 10.1016/j.aohep.2019.05.009.
  34. Huang X, Liang H, Fan X, et al. Liver damage in patients with HCV/HIV coinfection is linked to HIV-related oxidative stress. Oxidative Medicine and Cellular Longevity. 2016;2016. doi: 10.1155/2016/8142431.
  35. Колесникова Л.И., Колесников С.И., Даренская М.А., и др. Оценка про- и антиоксидантного статуса у женщин с ВИЧ и коинфекцией // Терапевтический архив. — 2016. — Т. 88. — № 11. — С. 17–21. doi: 10.17116/terarkh2016881117-21. [Kolesnikova LI, Kolesnikov SI, Darenskaya MA, et al. Assessment of pro- and antioxidant status in women with HIV and co-infection. Therapeutic Archive. 2016;88(11):17–21. (In Russ.)]
  36. Колесникова Л.И., Даренская М.А., Колесников С.И., и др. Оценка липопероксидных процессов у пациенток с хроническими парентеральными вирусными гепатитами и коинфекцией ВИЧ в зависимости от степени активности вопалительного процесса в печени // Терапевтический архив. — 2018. — Т. 90. — № 11. — С. 37–43. doi: 10.26442/terarkh201890114-43. [Kolesnikova LI, Darenskaya MA, Kolesnikov SI, et al. Evaluation of lipid peroxidation processes in patients with chronic parenteral viral hepatitis and HIV co-infection, depending on the degree of activity of the inflammatory process in the liver. Therapeutic Archive. 2018;90(11):37–43. (In Russ.)]
  37. Rajopadhye SH, Mukherjee SR, Chowdhary AS, et al. Oxidative stress markers in tuberculosis and HIV/TB co-infection. Journal of Clinical and Diagnostic Research (JCDR). 2017;11(8):BC24. doi: 10.7860/JCDR/2017/28478.10473.
  38. Makinde O, Rotimi K, Ikumawoyi V, et al. Effect of vitamin A and vitamin C supplementation on oxidative stress in HIV and HIV-TB co-infection at Lagos University Teaching Hospital (LUTH). Nigeria. African Health Sciences. 2017;17(2):308–314. doi: 10.4314/ahs.v17i2.3.
  39. Ивашкин В.Т., Ющук Н.Д., Маевская М.В., и др. Клинические рекомендации Российской гастроэнтерологической ассоциации и Российского общества по изучению печени по диагностике и лечению взрослых больных гепатитом В // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. — 2014. —№ 3. — С. 24–42. [Ivashkin VT, Jushhuk ND, Maevskaja MV, et al. Clinical guidelines of the Russian gastroenterological association and the Russian society for the study of the liver for the diagnosis and treatment of adult patients with hepatitis B. Russian Journal of Gastroenterology, Hepatology, Coloproctolog. 2014;3:24–42. (In Russ.)]
  40. Хронический вирусный гепатит С (ХВГС) у взрослых: клинические рекомендации / Национальное научное общество инфекционистов. — М.: Министерство здравоохранения; 2018. — 90 с. [Hronicheskij virusnyj gepatit S (HVGS) u vzroslyh: klinicheskie rekomendacii / Nacional’noe nauchnoe obshchestvo infekcionistov. Moskwa, Ministerstvo zdravoohraneniya, 2018, 90 s. (In Russ.)]
  41. Ivanov AV, Khomich OA, Bartosch B. Oxidative stress in hepatitis C infection. The Liver. Academic Press; 2018. Р. 1–13. doi: 10.1016/B978-0-12-803951-9.00001-X.
  42. Fu N, Yao H, Nan Y, Qiao, L. Role of oxidative stress in hepatitis C virus induced hepatocellular carcinoma. Current Cancer Drug Targets. 2017;17(6):498–504. doi: 10.2174/1568009616666160926124043.
  43. Ivanov AV, Valuev-Elliston VT, Tyurina DA, et al. Isaguliants oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget. 2017;8(3):3895–3932. doi: 10.18632/oncotarget.13904.
  44. Isaguliants MG, Bartosch B, Ivanov AV. redox biology of infection and consequent disease. Oxid Med Cell Longev. 2020;(10):1-4. doi: 10.1155/2020/5829521.
  45. Avci GA, Bulut Ş, Avci E, et al. Malondialdehyde (MDA) as a marker of lipid peroxidation levels in chronic hepatitis B. Journal of Cellular Neuroscience & Oxidative Stress. 2018;10(2).
  46. Alavian SM, Showraki A. Hepatitis B and its relationship with oxidative stress. Hepatitis Monthly. 2016;16(9). doi: 10.5812/hepatmon.37973.
  47. Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World Journal of Gastroenterology: WJG. 2014;20(33):11630. doi: 10.3748/wjg.v20.i33.11630.
  48. Arauz J, Ramos-Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: from bench to bedside. Annals of Hepatology. 2016;15(2):160–173. doi: 10.5604/16652681.1193701.
  49. Колесникова Л.И., Даренская М.А., Рашидова М.А., и др. Состояние липоперекисных процессов у женщин репродуктивного возраста, больных острой формой вирусного гепатита // Вестник Российской академии медицинских наук. — 2016. — Т. 71. — № 1. — С. 11–15. doi: 10.15690/vramn525. [Kolesnikova LI, Darenskaya MA, Rashidova MA, et al. The state of lipid peroxidation in women of reproductive age, patients with acute viral hepatitis. Annals of the Russian Academy of Medical Sciences. 2016;71(1):11–15. (In Russ.)]
  50. Darenskaya MA, Grebenkina LA, Sholokhov LF, et al. Lipid peroxidation activity in women with chronic viral hepatitis. Free Radical Biology & Medicine. 2016;100(S):S192. doi: 10.1016/j.freeradbiomed.2016.10.525.
  51. Moossavi S, Besharat S, Sharafkhah M, et al. Inverse association of plasma level of glutathione peroxidase with liver fibrosis in chronic hepatitis B: potential role of iron. Middle East Journal of Digestive Diseases. 2016;8(2):122. doi: 10.15171/mejdd.2016.17.
  52. Huang Y, Zhang Y, Lin Z, et al. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B. Medicine. 2017;97(24). doi: 10.1097/MD.0000000000011137.
  53. Qu C, Zhang S, Li Y, et al. Peppelenbosch, Qiuwei PanMitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Rev Med Virol. 2019;29(5):e2075. doi: 10.1002/rmv.2075.
  54. Khedr MA, El-Araby HA, Konsowa HAS, et al. Glutathione peroxidase and malondialdehyde in children with chronic hepatitis C. Clinical and Experimental Hepatology. 2019;5(1):81. doi: 10.5114/ceh.2019.83161
  55. Almaeen AH, Alduraywish AA, Mobasher MA, et al. Oxidative stress, immunological and cellular hypoxia biomarkers in hepatitis C treatment-naïve and cirrhotic patients. Archives of Medical Science. 2020. doi: 10.5114/aoms.2019.91451.
  56. Bekyarova G, Tzaneva M, Bratoeva K, et al. 4-Hydroxynonenal (HNE) and hepatic injury related to chronic oxidative stress. Biotechnology & Biotechnological Equipment. 2019;33(1):1544–1552. doi: 10.1080/13102818.2019.1674690.
  57. Туберкулез органов дыхания у взрослых: клинические рекомендации / Российское общество фтизиатров. — М.: Министерство здравоохранения; 2018. — 61 с. [Tuberkulez organov dyhaniya u vzroslyh: klinicheskie rekomendacii / Rossijskoe obshchestvo ftiziatrov. Moskwa, Ministerstvo zdravoohraneniya, 2018. 61 s. (In Russ.)]
  58. Сабадаш Е.В., Скорняков С.Н., Павлов В.А., и др. Активные формы кислорода и высокоактивные соединения азота лейкоцитов крови в механизмах защиты и повреждения при туберкулезе легких. Патологическая физиология и экспериментальная терапия. — 2016. — Т.60. — №4. — С. 101–106. doi: 10.25557/0031-2991.2016.04.101-106. [Sabadash EV, Skornyakov SN, Pavlov VA, et al. Active forms of oxygen and highly active nitrogen compounds of blood leukocytes in the mechanisms of protection and damage in pulmonary tuberculosis. Pathological physiology and experimental therapy. 2016;60(4):101–106. (In Russ.)]
  59. Шейфер Ю.А., Зинчук В.В. Кислородтранспортная функция крови и активность свободнорадикальных процессов при туберкулезе легких. Здравоохранение (Минск). — 2017. — Т. 7. — С. 5–11. [Shejfer YA, Zinchuk VV. Blood oxygen carrying function and activity of free radical processes in case of pulmonary tuberculosis different clinical forms. Healthcare (Minsk). 2017;7:5–11. (In Russ.)]
  60. Shastri MD, Shukla SD, Chong WC, et al. Role of oxidative stress in the pathology and management of human tuberculosis // Oxidative Medicine and Cellular Longevity, 2018. doi: 10.1155/2018/7695364.
  61. Verma I, Jindal SK, Ganguly NK. Oxidative stress in tuberculosis // Studies on Respiratory Disorders. New York, NY, Humana Press; 2014. Р. 101–114. doi: 10.1007/978-1-4939-0497-6_6.
  62. Sarkar K, Sil PC. Infectious lung diseases and endogenous oxidative stress // Oxidative Stress in Lung Diseases. Springer, Singapore. 2019. Р. 125–148.
  63. Yeldu M, Ibrahim Y, Akuyam S, et al. Oxidative stress biomarkers in pulmonary tuberculosis patients in Gombe, North-eastern Nigeria. Asian Journal of Medical Sciences. 2018;10(6):57–62. doi: 10.3126/ajms.v10i6.25593.
  64. Yew WW, Chang KC, Leung CC, et al. Vitamin C and Mycobacterium tuberculosis persisters. Antimicrobial agents and chemotherapy. 2018;62(11). doi: 10.1128/AAC.01641-18.
  65. Yudhawati R, Prasanta N. The role of N-acetyl sistein in pulmonary tuberculosis. Jurnal Respirasi, 2018;6(1):27–34. doi: 10.20473/jr.v6-I.1.2020.27-34.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 318

PDF (Russian) - 1

Cited-By


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies