Role of cytokines in the pathogenesis of glaucoma

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Glaucoma is one of the leading causes of irreversible blindness worldwide and belongs to age-related diseases. However, its pathogenesis is not fully understood. Primary open-angle glaucoma (POAG), pseudoexfoliative (PE) glaucoma are the most common forms of glaucoma. Increased intraocular pressure (IOP) is one of the main risk factors for glaucoma progression. The trabecular meshwork participates in regulating and maintaining a constant level of IOP throughout life. Impairment of intercellular interactions, development of cellular dysfunction and the associated imbalance of pro- and anti-inflammatory cytokines and growth factors underlie the development of most age-related diseases. The role of chronic inflammation, changes in innate and acquired immunity in the development of glaucoma is currently being discussed. Aqueous humor (AH) contains cytokines and growth factors, which are the most important link in the processes of intercellular interaction and are produced by cells of various structures of the eye both in physiological and in pathological conditions. The study of the spectrum, levels, and ratio of different mediator molecules in patients with glaucoma has not yet had a systematic approach. The data obtained are contradictory, which is due to the use of various biological fluids (plasma, AH, tear), determination methods, and the variability of the studied groups of patients. The purpose of this review was to systematize the accumulated knowledge about the role of cytokines and immune system cells in the pathogenesis of glaucoma. Research in this direction will not only reveal new predictive biomarkers, but also develop new approaches in glaucoma therapy.


Full Text

Restricted Access

About the authors

V. V. Rakhmanov

Academician I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: rakhmanoveyes@yandex.ru
ORCID iD: 0000-0002-9503-1824
SPIN-code: 3964-7662

Russian Federation, Saint Petersburg

MD, PhD

D. I. Sokolov

Academician I.P. Pavlov First St. Petersburg State Medical University; The Research Institute of Obstetrics, Ginecology and Reproductology Named after D.O. Ott

Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531
SPIN-code: 3746-0000

Russian Federation, Saint-Petersburg

PhD in Biology

S. A. Selkov

Academician I.P. Pavlov First St. Petersburg State Medical University; The Research Institute of Obstetrics, Ginecology and Reproductology Named after D.O. Ott

Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529
SPIN-code: 7665-0594

Russian Federation, Saint-Petersburg

MD, PhD, Professor

Yu. S. Astakhov

Academician I.P.Pavlov First St.Petersburg State Medical University

Email: astakhov73@mail.ru
SPIN-code: 7164-4749

Russian Federation, Saint Petersburg

MD, PhD, Professor

S. Yu. Astakhov

Academician I.P.Pavlov First St.Petersburg State Medical University

Email: astakhov73@mail.ru
SPIN-code: 7732-1150

Russian Federation, Saint Petersburg

MD, PhD, Professor

References

  1. Rudnicka AR, Mt-Isa S, Owen CG, et al. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci. 2006;47(10):4254–4261. doi: https://doi.org/10.1167/iovs.06-0299
  2. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: https://doi.org/10.1016/j.ophtha.2014.05.013
  3. Holló G, Katsanos A, Konstas AG. Management of exfoliative glaucoma: challenges and solutions. Clin Ophthalmol. 2015;9:907–919. doi: https://doi.org/10.2147/OPTH.S77570
  4. Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56. doi: https://doi.org/10.1001/archopht.121.1.48
  5. Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88(4):648–655. doi: https://doi.org/10.1016/j.exer.2009.02.007
  6. Carreon T, van der Merwe E, Fellman RL, et al. Aqueous outflow — A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res. 2017;57:108–133. doi: https://doi.org/10.1016/j.preteyeres.2016.12.004
  7. Yin Y, Cui Q, Li Y, et al. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 2003;23(6):2284–2293. doi: https://doi.org/10.1523/JNEUROSCI.23-06-02284.2003
  8. Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res. 2017;158:112–123. doi: https://doi.org/10.1016/j.exer.2016.07.009
  9. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi: https://doi.org/10.1038/nature07201
  10. Fossel M, Ann NY. Cell senescence in human aging and disease. Ann N Y Acad Sci. 2002;959:14–23. doi: 10.1111/j.1749-6632.2002.tb02078.x
  11. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–972. doi: https://doi.org/10.1172/JCI64098
  12. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl1):S4–S9. doi: https://doi.org/10.1093/gerona/glu057
  13. Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015;98(5):713–725. doi: https://doi.org/10.1189/jlb.3RI0615-239R
  14. Zheng Y, Rao YQ, Li JK, et al. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol. 2018;11(2):196–200. doi: https://doi.org/10.18240/ijo.2018.02.03
  15. Соколов Д.И., Сельков С.А. Децидуальные макрофаги: роль в иммунологическом диалоге матери и плода // Иммунология. — 2014. — Т. 35. — № 2. — С. 113–117. [Sokolov DI, Sel’kov SA. Decidual macrophages: the role in immunologic dialogue of mother and the fetus. Immunologiya. 2014;35(2):113–117. (In Russ.)]
  16. Johnson DH, Richardson TM, Epstein DL. Trabecular meshwork recovery after phagocytic challenge. Curr Eye Res. 1989;8(11):1121–1130. doi: 10.3109/02713688909000037
  17. Alvarado JA, Murphy CG. Outflow obstruction in pigmentary and primary open angle glaucoma. Arch Ophthalmol. 1992;110(12):1769–1778. doi: https://doi.org/10.1001/archopht.1992.01080240109042
  18. Flugel C, Kinne RW, Streilein JW, Lutjen-Drecoll E. Distinctive distribution of HLA class II presenting and bone marrow derived cells in the anterior segment of human eyes. Curr Eye Res. 1992;11(2):1173–1183. doi: 10.3109/02713689208999542
  19. Alvarado JA, Katz LJ, Trivedi S, Shifera AS. Monocyte modulation of aqueous outflow and recruitment to the trabecular meshwork following selective laser trabeculoplasty. Arch Ophthalmol. 2010;128(6):731–737. doi: https://doi.org/10.1001/archophthalmol.2010.85
  20. Shifera AS, Trivedi S, Chau P, et al. Constitutive secretion of chemokines by cultured human trabecular meshwork cells. Exp Eye Res. 2010;91(1):42–47. doi: https://doi.org/10.1016/j.exer.2010.04.001
  21. Solana R, Tarazona R, Gayoso I, et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331–341. doi: https://doi.org/10.1016/j.smim.2012.04.008
  22. Lin F, Wang N, Zhang. The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life. 2012;64(9):717–723. doi: https://doi.org/10.1002/iub.1059
  23. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–1080. doi: https://doi.org/10.1016/j.ajpath.2011.06.001
  24. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–1323. doi: https://doi.org/10.1083/jcb.200704042
  25. Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179(5):2660–2673. doi: https://doi.org/10.1016/j.ajpath.2011.07.042
  26. Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions. Int J Biol Sci. 2013;9(9):966–979. doi: https://doi.org/10.7150/ijbs.6996
  27. Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013;58(4):311–320. doi: https://doi.org/10.1016/j.survophthal.2012.08.010
  28. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–579. doi: 10.1016/s0161-6420(84)34248-8
  29. Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28(46):12085–12096. doi: https://doi.org/10.1523/JNEUROSCI.3200-08.2008
  30. Kondkar AA, Sultan T, Almobarak FA, et al. Association of increased levels of plasma tumor necrosis factor alpha with primary open-angle glaucoma. Clin Ophthalmol. 2018;12:701–706. doi: https://doi.org/10.2147/OPTH.S162999
  31. Kondkar AA, Azad TA, Almobarak FA, et al. Elevated levels of plasma tumor necrosis factor alpha in patients with pseudoexfoliation glaucoma. Clin Ophthalmol. 2018;12:153–159. doi: https://doi.org/10.2147/OPTH.S155168
  32. Kuchtey J, Kunkel J, Burgess LG, et al. Elevated transforming growth factor β1 in plasma of primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci. 2014;55(8):5291–5297. doi: https://doi.org/10.1167/iovs.14-14578
  33. Sarenac Vulovic T, Pavlovic S, Lutovac M, et al. Regulatory cytokines prescribe the outcome of the inflammation in the process of pseudoexfoliation production. J Chin Med Assoc. 2019;82(12):935–940. doi: https://doi.org/10.1097/JCMA.0000000000000214
  34. Garweg JG, Zandi S, Pfister IB, et al. Comparison of cytokine profiles in the aqueous humor of eyes with pseudoexfoliation syndrome and glaucoma. PLoS One. 2017;12(8):e0182571. doi: https://doi.org/10.1371/journal.pone.0182571
  35. Takai Y, Tanito M, Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 2012;53(1):241–247. doi: https://doi.org/10.1167/iovs.11-8434
  36. Chua J, Vania M, Cheung CM, et al. Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol Vis. 2012;18:431–438.
  37. Ten Berge JC, Fazil Z, van den Born I, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019;97(2):185–192. doi: https://doi.org/10.1111/aos.13899
  38. Browne JG, Ho SL, Kane R, et al. Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci. 2011;52(6):3660–3666. doi: https://doi.org/10.1167/iovs.10-5209
  39. Черных В.В., Коненков В.И., Ермакова О.В., и др. Содержание цитокинов и факторов роста во внутриглазной жидкости у пациентов с первичной открытоугольной глаукомой // Бюллетень сибирской медицины. — 2019. — Т. 18. — № 1. — С. 257–265. [Chernykh VV, Konenkov VI, Ermakova OV, et al. Сontent of cytokines and growth factors in the intraocular fluid of patients with primary open-angle glaucoma. Bulletin of Siberian Medicine. 2019;18(1):257–265. (In Russ.)]. doi: https://doi.org/10.20538/1682-0363-2019-1-257-265
  40. Csősz É, Deák E, Tóth N, et al. Comparative analysis of cytokine profiles of glaucomatous tears and aqueous humour reveals potential biomarkers for trabeculectomy complications. FEBS Open Bio. 2019;9(5):1020–1028. doi: https://doi.org/10.1002/2211-5463.12637
  41. Gupta D, Wen JC, Huebner JL, et al. Cytokine biomarkers in tear film for primary open-angle glaucoma. Clin Ophthalmol. 2017;11:411–416. doi: https://doi.org/10.2147/OPTH.S125364
  42. Martinez-de-la-Casa JM, Perez-Bartolome F, Urcelay E, et al. Tear cytokine profile of glaucoma patients treated with preservative-free or preserved latanoprost. Ocul Surf. 2017;15(4):723–729. doi: https://doi.org/10.1016/j.jtos.2017.03.004
  43. Агарков Н.М., Чухраёв А.М., Яблокова Н.В. Диагностика и прогнозирование первичной открытоугольной глаукомы по уровню местных цитокинов // Медицинская иммунология. — 2019. — Т. 21. — № 6. — С. 1163–1168. [Agarkov NM, Chukhraev AM, Yablokova NV. Diagnosis and prediction of primary open-angle glaucoma by the level of local cytokine. Medical Immunology (Russia). 2019;21(6):1163–1168. (In Russ.)]. doi: https://doi.org/10.15789/1563-0625-2019-6-1163-1168
  44. Баранов В.И., Маркова Е.В. Определение маркеров сосудистой эндотелиальной дисфункции в слезной жидкости при псевдоэксфолиативной глаукоме // Медицинский вестник Башкортостана. — 2018. — Т. 13. — № 1. — С. 58–61. [Baranov VI, Markova EV. Determination of vascular endothelial dysfunction markers in the tear fluid in pseudoexfoliation glaucoma. Bashkortostan Medical Journal. 2018;13(5):58–61. (In Russ.)].
  45. Еричев В.П., Ганковская Л.В., Ковальчук Л.В., и др. Изменение некоторых иммунологических показателей слезной жидкости при избыточном рубцевании после антиглаукоматозных операций у пациентов с первичной открытоугольной глаукомой // Вестник офтальмологии. — 2010. — Т. 126. — № 3. — С. 25–29. [Erichev VP, Gankovskaia LV, Koval’chuk LV, et al. Changes in various immunological parameters of lacrimal fluid in excessive scarring after antiglaucoma surgery in patients with primary open-angle glaucoma. Vestn Oftalmol. 2010;126(3):25–29. (In Russ.)].
  46. Micera A, Quaranta L, Esposito G, et al. Differential protein expression profiles in glaucomatous trabecular meshwork: an evaluation study on a small primary open angle glaucoma population. Adv Ther. 2016;33(2):252–267. doi: https://doi.org/10.1007/s12325-016-0285-x
  47. Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol. 2010;45(1):75–79. doi: https://doi.org/10.1016/j.exger.2009.09.005
  48. Küchle M, Nguyen NX, Hannappel E, Naumann GO. The blood-aqueous barrier in eyes with pseudoexfoliation syndrome. Ophthalmic Res. 1995;27(Suppl1):136–142. doi: https://doi.org/10.1159/000267859
  49. Didion SP. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci. 2017;18(12):2563. doi: https://doi.org/10.3390/ijms18122563
  50. Zhang L, Keane MP, Zhu LX, et al. Interleukin-7 and transforming growth factor-beta play counter-regulatory roles in protein kinase C-delta-dependent control of fibroblast collagen synthesis in pulmonary fibrosis. J Biol Chem. 2004;279(27):28315–28319. doi: https://doi.org/10.1074/jbc.C400115200
  51. Clarke CJ, Hales A, Hunt A, Foxwell BM. IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. Eur J Immunol. 1998;28(5):1719–1726. doi: https://doi.org/10.1002/(SICI)1521-4141(199805)28:05<1719::AID-IMMU1719>3.0.CO;2-Q
  52. Zenkel M, Lewczuk P, Jünemann A, et al. Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol. 2010;176(6):2868–2879. doi: https://doi.org/10.2353/ajpath.2010.090914
  53. Inoue-Mochita M, Inoue T, Kojima S, et al. Interleukin-6-mediated trans-signaling inhibits transforming growth factor-β signaling in trabecular meshwork cells. J Biol Chem. 2018;293(28):10975–10984. doi: https://doi.org/10.1074/jbc.RA118.003298
  54. Ritch R. Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma. 1994;3(2):176–177.
  55. Elhawy E, Kamthan G, Dong CQ, Danias J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 2012;6(1):22. doi: https://doi.org/10.1186/1479-7364-6-22
  56. Schlötzer-Schrehardt U, Naumann GO. Trabecular meshwork in pseudoexfoliation syndrome with and without open-angle glaucoma. A morphometric, ultrastructural study. Invest Ophthalmol Vis Sci. 1995;36(9):1750–1764.
  57. Borrás T. Growth factors, oxidative damage, and inflammation in exfoliation syndrome. J Glaucoma. 2018;27(Suppl1):S54–S60. doi: https://doi.org/10.1097/IJG.0000000000000904
  58. Saccà SC, Pulliero A, Izzotti A. The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol. 2015;230(3):510–525. doi: https://doi.org/10.1002/jcp.24826
  59. Konstas AG, Koliakos GG, Karabatsas CH, et al. Latanoprost therapy reduces the levels of TGF beta 1 and gelatinases in the aqueous humour of patients with exfoliative glaucoma. Exp Eye Res. 2006;82(2):319–322. doi: https://doi.org/10.1016/j.exer.2005.07.004
  60. Inoue T, Kawaji T, Inatani M, et al. Simultaneous increases in multiple proinflammatory cytokines in the aqueous humor in pseudophakic glaucomatous eyes. J Cataract Refract Surg. 2012;38(8):1389–1397. doi: https://doi.org/10.1016/j.jcrs.2012.04.028

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 171

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies