The Role of Angiogenesis Mediators in the Mobilization of Early and Late Endothelial Progenitor Cells from the Bone Marrow in Coronary Heart Disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. A severe form of coronary heart disease (CHD) is ischemic cardiomyopathy (ICMP), the pathogenesis of which has not been fully studied. Disturbances in the mobilization of endothelial progenitor cells (EPC) due to an imbalance of angiogenesis mediators may exacerbate ischemia in ICMP. The aim — to establish the peculiarities of changes in the balance of early and late EPС and subpopulations of VEGFR2+ cells in the blood and bone marrow in relation to the content of angiogenesis mediators and the number of desquamated endothelial cells (DEK) in the blood of patients with CHD, suffering and not suffering from ICMP. Methods. A single-stage, clinical, controlled (case-control) study was conducted from March 2019 to June 2022. 52 patients with CHD who had a history of myocardial infarction were examined: 30 people suffering from ICMP and 22 people not suffering from ICMP, as well as 15 healthy donors. The content of VEGFR2+, VEGFR2+CD34+CD14+ (early EPC), VEGFR2+CD34+CD14 (late EPC), VEGFR2+CD34CD14+, VEGFR2+CD34CD14 cells in patients with CHD in the blood (before surgery) and bone marrow (sampling was performed at the beginning of coronary bypass) and in healthy individuals in the blood, as well as (in both groups) the content of CD45CD146+ DEC in the blood was determined by flow cytometry. The concentration of SDF-1, VEGF-A, MCP-1, GM-CSF, G-CSF in blood plasma was measured by multiplex immunofluorescence analysis. Results. The development of CHD without cardiomyopathy was accompanied by an increase in the content of VEGFR2+CD34+CD14+ and VEGFR2+ cells (0.74 [0.46; 1.23]% and 10.00 [8.20; 11.60]%, respectively, versus 0.19 [0.13; 0.32]%, p < 0.001 and 5.40 [4.30; 6.50]%, p = 0.005) and concentrations of SDF-1, MCP-1, GM-CSF (respectively 60.00 [50.00; 81.00] pg/ml; 223.0 [180.0; 297.0] pg/ml; 2.10 [1.45; 3.40] pg/ml versus 30.00 [5.00; 45.00] pg/ml, p = 0.041; 175.1 [140.0; 204.0] pg/ml, p = 0.046; 0.96 [0.46; 1.41] pg/ml, p = 0.038) in the blood relative to the norm. No such changes were observed in patients with ICMP. Regardless of the presence of ICMP, the content of VEGFR2+CD34+CD14, VEGFR2+CD34CD14+, VEGFR2+CD34CD14 cells, VEGF-A, G-CSF in the blood of patients with CHD varied within physiological values, and the number of DEC exceeded the norm (7.26 [5.43; 17.94]×105/l, p = 0.039). The number of VEGFR2+ cells and their immunophenotypes in the bone marrow of patients with ICMP did not differ from the parameters in patients with CHD without cardiomyopathy. Prolonged bleeding from the venopuncture area was registered in one CHD patient without cardiomyopathy. Conclusion. The development of ICMP is associated with the absence of a compensatory response to atherogenesis in the form of increased mobilization of early EPC from the bone marrow due to the absence of a reaction associated with hyperproduction of SDF-1, MCP-1, GM-CSF, which is characteristic of CHD without cardiomyopathy. The content of EPС, VEGFR2+CD34CD14+ and VEGFR2+CD34CD14 cells, VEGF-A and G-CSF in the blood in СHD corresponds to physiological values, regardless of the presence of ICMP. The generation of EPC in the bone marrow in ICMP is not impaired.

Full Text

Restricted Access

About the authors

Svetlana P. Chumakova

Siberian State Medical University

Author for correspondence.
Email: Chumakova_S@mail.ru
ORCID iD: 0000-0003-3468-6154

MD, PhD, Associate Professor, Pathophysiology Division 

Russian Federation, Tomsk

Olga I. Urazova

Siberian State Medical University

Email: urazova72@yandex.ru
ORCID iD: 0000-0002-9457-8879

MD, PhD, Professor, Corresponding Member of the RAS, Pathophysiology Division 

Russian Federation, Tomsk

Vladimir M. Shipulin

Siberian State Medical University; Cardiology Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: shipulin@cardio-tomsk.ru
ORCID iD: 0000-0003-1956-0692

MD, PhD, Professor, Pathophysiology Division

Russian Federation, Tomsk; Tomsk

Olga A. Denisenko

Siberian State Medical University

Email: olga-muraveinik@yandex.ru
ORCID iD: 0000-0003-4524-8491

Applicant, Pathophysiology Division

Russian Federation, Tomsk

Margarita V. Gladkovskaya

Siberian State Medical University

Email: gladkovskay0@gmail.com
ORCID iD: 0000-0003-1163-3439

PhD Student, Pathophysiology Division 

Russian Federation, Tomsk

Sergey L. Andreev

Cardiology Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: anselen@rambler.ru
ORCID iD: 0000-0003-4049-8715

MD, PhD

Russian Federation, Tomsk

Ksenia V. Nevskaya

Siberian State Medical University

Email: nevskayaksenia@gmail.com
ORCID iD: 0000-0003-1659-8812

MD, PhD, Central Research Laboratory 

Russian Federation, Tomsk

Yulia V. Kolobovnikova

Siberian State Medical University

Email: kolobovnikova.julia@mail.ru
ORCID iD: 0000-0001-7156-2471

MD, PhD, Associate Professor, Pathophysiology Division, Normal Physiology Division 

Russian Federation, Tomsk

References

  1. Del Buono MG, Moroni F, Montone RA, et al. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr Cardiol Rep. 2022;24(10):1505–1515. doi: https://doi.org/10.1007/s11886-022-01766-6
  2. Шипулин В.М., Пряхин А.С., Андреев С.Л., и др. Современные клинико-фундаментальные аспекты в диагностике и лечении пациентов с ишемической кардиомиопатией (обзор) // Сибирский журнал клинической и экспериментальной медицины. — 2021. — Т. 36. — № 1. — С. 20–29. [Shipulin VM, Pryakhin AS, Andreev SL, et al. Modern clinical and fundamental aspects in the diagnosis and treatment of patients with ischemic cardiomyopathy (Review). The Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):20–29. (In Russ.)] doi: https://doi.org/10.29001/2073-8552-2021-36-1-20-29
  3. Gyöngyösi M, Winkler J, Ramos I, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19(2):177–191. doi: https://doi.org/10.1002/ejhf.696
  4. Dang H, Ye Y, Zhao X, et al. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020;20(1):320. doi: https://doi.org/10.1186/s12872-020-01596-w
  5. Argunova Y, Belik E, Gruzdeva O, et al. Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery. J Pers Med. 2022;12(3):471. doi: https://doi.org/10.3390/jpm12030471
  6. Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab. 2019;8(2):51–61. doi: https://doi.org/10.1097/XCE.0000000000000172
  7. Мельникова Ю.С., Макарова Т.П. Эндотелиальная дисфункция как центральное звено патогенеза хронических заболеваний // Казанский медицинский журнал. — 2015. — Т. 96. — № 4. — С. 659–665. [Mel’nikova YuS, Makarova TP. Endothelial dysfunction as the key link of chronic diseases pathogenesis. Kazan Medical Journal. 2015;96(4):659–665. (In Russ.)] doi: https://doi.org/10.17750/KMJ2015-65
  8. Chopra H, Hung MK, Kwong DL, et al. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Intl. 2018;2018:9847015. doi: https://doi.org/10.1155/2018/9847015
  9. Денисенко О.А., Чумакова С.П., Уразова О.И. Эндотелиальные прогениторные клетки: происхождение и роль в ангиогенезе при сердечно-сосудистой патологии // Сибирский журнал клинической и экспериментальной медицины. — 2021. — Т. 36. — № 2. — С. 23–29. [Denisenko OA, Chumakova SP, Urazova OI. Endothelial progenitor cells: origin and role in angiogenesis in cardiovascular diseases. Siberian Journal of Clinical and Experimental Medicine. 2021;36(2):23–29. (In Russ.)] doi: https://doi.org/10.29001/2073-8552-2021-36-2-23-29
  10. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1 – dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003;93(10):980–989. doi: https://doi.org/10.1161/01.RES.0000099245.08637.CE
  11. Zhao H-Y, Zhu Y-P, Wen Y, et al. MCP-1 facilitates VEGF production by removing miR-374b-5p blocking of VEGF mRNA translation. Biochem Pharmacol. 2022;206:115334. doi: https://doi.org/10.1016/j.bcp.2022.115334
  12. Felker GM, Shaw GM, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):208–210. doi: https://doi.org/10.1016/s0735-1097(01)01738-7
  13. Van Kuijk К, Kuppe C, Betsholtz C, et al. Heterogeneity and plasticity in healthy and atherosclerotic vasculature explored by single-cell sequencing. Cardiovasc Res. 2019;115(12):1705–1715. doi: https://doi.org/10.1093/cvr/cvz185
  14. Genkel V, Dolgushin I, Baturina I, et al. Associations between Circulating VEGFR2hi-Neutrophils and Carotid Plaque Burden in Patients Aged 40–64 without Established Atherosclerotic Cardiovascular Disease. J Immunol Res. 2022;2022:1539935. doi: https://doi.org/10.1155/2022/1539935
  15. Kaira K, Imai H, Kawasaki T, et al. Potential of VEGFR2 expression as a predictive marker of PD-1 blockade in patients with advanced NSCLC. Oncol Rep. 2022;48(6):214. doi: https://doi.org/10.3892/or.2022.8429
  16. Zimna A, Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412. doi: https://doi.org/10.1155/2015/549412
  17. Sun J, Shen H, Shao L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 2020;11(1):373. doi: https://doi.org/10.1186/s13287-020-01881-7
  18. Чумакова С.П., Шипулин В.М., Уразова О.И., и др. Ишемическая кардиомиопатия: моноциты крови и медиаторы их дифференциации // Вестник Российской академии медицинских наук. — 2019. — Т. 74. — № 6. — С. 396–404. [Chumakova SP, Shipulin VM, Urazova OI, et al. Ischemic cardiomyopathy: blood monocytes and mediators of their differentiation. Annals of the Russian Academy of Medical Sciences. 2019;74(6):396–404. (In Russ.)] doi: https://doi.org/10.15690/vramn1185
  19. Чумакова С.П., Уразова О.И., Денисенко О.А., и др. Цитокины в механизмах регуляции моноцитопоэза при ишемической болезни сердца // Гематология и трансфузиология. — 2022. — Т. 67. — № 4. — С. 511–524. [Chumakova SP, Urazova OI, Denisenko OA, et al. Cytokines in the mechanisms of regulation of monocytopoiesis in ischemic heart disease. Russian Journal of Hematology and Transfusiology. 2022;67(4):511–524. (In Russ.)] doi: https://doi.org/10.35754/0234-5730-2022-67-4-511-524
  20. Dimova I, Karthik S, Makanya A, et al. SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception. J Cell Mol Med. 2019;23(6):3916–3926. doi: https://doi.org/10.1111/jcmm.14269
  21. Wang X, Jiang H, Guo L, et al. SDF-1 secreted by mesenchymal stem cells promotes the migration of endothelial progenitor cells via CXCR4/PI3K/AKT pathway. J Mol Histol. 2021;52(6):1155–1164. doi: https://doi.org/10.1007/s10735-021-10008-y
  22. Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(PtB):107598. doi: https://doi.org/10.1016/j.intimp.2021.107598
  23. Niu J, Wang K, Zhelyabovska O. MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther. 2013;347(2):288–297. doi: https://doi.org/10.1124/jpet.113.207316
  24. Qiu C, Xie Q, Zhang D. GM-CSF induces cyclin D1 expression and proliferation of endothelial progenitor cells via PI3K and MAPK signaling. Cell Physiol Biochem. 2014;33(3):784–795. doi: https://doi.org/10.1159/000358652
  25. Hamilton JA. GM-CSF-Dependent Inflammatory Pathways. Front Immunol. 2019;10:2055. doi: https://doi.org/10.3389/fimmu.2019.02055
  26. Laakkonen JP, Lähteenvuo J, Jauhiainen S, et al. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol. 2019;112:91–101. doi: https://doi.org/10.1016/j.vph.2018.10.005
  27. Zhou Y, Zhu X, Cui H, et al. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021;8:738325. doi: https://doi.org/10.3389/fcvm.2021.738325

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Алгоритм гейтирования иммунофенотипов VEGFR2+ клеток, включая ранние и поздние эндотелиальные прогениторные клетки: А — распределение лейкоцитов крови по фронтальному и боковому светорассеянию; Б — гейтирование мононуклеаров по VEGFR2 и СD14 для оценки экспрессии VEGFR2+ клеток; В — гейтирование VEGFR2+ клеток по СD34+ и СD14+ для оценки имму- нофенотипов VEGFR2+ клеток, включая ранние (VEGFR2+ СD34+СD14+) и поздние (VEGFR2+ СD34+СD14–) эндотелиальные прогениторные клетки

Download (259KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies