Ischemic cardiomyopathy: blood monocytes and mediators of their differentiation

Cover Page
  • Authors: Chumakova S.P.1, Shipulin V.M.1,2, Urazova O.I.1, Pogonchenkova D.A.1, Vince M.V.1, Pryakhin A.S.2, Kolobovnikova Y.V.1, Churina E.G.1,3, Novitskiy V.V.1
  • Affiliations:
    1. Siberian State Medical University
    2. Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute
    3. Tomsk State University (TSU)
  • Issue: Vol 74, No 6 (2019)
  • Pages: 396-404
  • Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/1185
  • DOI: https://doi.org/10.15690/vramn1185
  • Cite item
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


BACKGROUND: The three-year survival rate of patients with ischemic cardiomyopathy (ICMP) is 5−35 %; its pathogenesis is poorly understood. Violation of cytokine-dependent differentiation of monocytes/macrophages involved in atherogenesis may play an important role in the development of ICMP.

AIMS: To characterize the disorders of monocytes subpopulation composition and mediators spectrum of blood in patients with coronary heart disease (CHD), associated with the development of ICMP.

METHODS: A one-stage, clinical, controlled (case-control) study was conducted from February 2017 to December 2018. 45 patients with CHD (all men), who were in a cardiac surgery hospital, were examined before coronary bypass surgery: 19 people suffering from ICMP, and 26 people who do not suffer from ICMP, as well as 14 healthy men. In the blood of the examined individuals CD14++CD16-, CD14++CD16+, CD14+CD16++ and CD14+CD16- monocytes were determined with respect to all CD14-positive cells by flow cytometry, in blood plasma ― concentration of galectin 2 and 9, IL-4, IL-10, IFN-γ, M-CSF, HIF-1α by enzyme-linked immunosorbent assay (ELISA).

RESULTS: The development of the ICMP accompanied by deficiency of HIF-1α and CD14+CD16++ monocytes (0.037 [0.020; 0.045] ng/ml, p = 0.019, and 5.05 [4.08; 6.58] %, p = 0.011) in combination with an excess of IL-10 (30.05 [24.75; 33.50] ng/ml, p = 0.042) in the blood. It is shown in blood of patients without ischemic cardiomyopathy the increase in the content of CD14++CD16+ cells and lack of CD14+CD16- monocytes (25.27 [15.78; 31.39] %, p = 0.038, and 2.68 [2.63; 4.09] %, p = 0.027) at normal concentration of IL-10 and HIF-1α. In patients with CHD and ischemic cardiomyopathy and without ICMP in the blood the concentration of M-CSF and galectin-2 (2.00 [1.21; 3.24] pg/ml, p = 0.028, and 0.40 [0.12; 2.37] ng/ml, p = 0.004; 3.00 [1.90; 4.05] pg/ml, p = 0.003, and 3.20 [2.07; 4.00] ng/ml, p = 0.002, respectively) is reduced at normal content of galectin-9, and CD14++CD16- monocytes. IL-4 and IFN-γ in blood plasma are not determined (zero values).

CONCLUSIONS: The development of ICMP is associated with excess of IL-10 and HIF-1α deficiency, which is accompanied by inhibition of CD14+CD16++ monocytes maturation.


Full Text

Restricted Access

About the authors

Svetlana P. Chumakova

Siberian State Medical University

Author for correspondence.
Email: Chumakova_S@mail.ru
ORCID iD: 0000-0003-3468-6154
SPIN-code: 7536-2834

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

MD, PhD, Professor

Vladimir M. Shipulin

Siberian State Medical University; Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute

Email: shipulin@cardio-tomsk.ru
ORCID iD: 0000-0003-1956-0692

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050; 5, Kooperativnyi s.s., Tomsk region, Tomsk, 634009

MD, PhD, Professor

Olga I. Urazova

Siberian State Medical University

Email: urazova72@yandex.ru
ORCID iD: 0000-0002-9457-8879

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

MD, PhD, Professor

Darya A. Pogonchenkova

Siberian State Medical University

Email: azarova_d_a@mail.ru
ORCID iD: 0000-0002-5903-3662
SPIN-code: 4141-9068

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

Maria V. Vince

Siberian State Medical University

Email: wmw_1991@mail.ru
SPIN-code: 8198-5676

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

ассистент кафедры патофизиологии

Andrew S. Pryakhin

Tomsk National Research Medical Center of the Russian Academy of Sciences, Cardiology Research Institute

Email: andrew.prk@mail.ru
ORCID iD: 0000-0003-0532-8091
SPIN-code: 9716-9356

Russian Federation, 5, Kooperativnyi s.s., Tomsk, 634009

аспирант отделения сердечно-сосудистой хирургии

Yulia V. Kolobovnikova

Siberian State Medical University

Email: kolobovnikova.julia@mail.ru
ORCID iD: 0000-0001-7156-2471
SPIN-code: 3638-1577

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

MD, PhD, Professor

Elena G. Churina

Siberian State Medical University; Tomsk State University (TSU)

Email: Lena1236@yandex.ru
ORCID iD: 0000-0002-8509-9921
SPIN-code: 9804-5093

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050; 34a, Lenina prospect, Tomsk, 634050

д.м.н., профессор кафедры

Vyacheslav V. Novitskiy

Siberian State Medical University

Email: kaf.pat.fiziolog@ssmu.ru
ORCID iD: 0000-0002-9577-8370
SPIN-code: 7160-6881

Russian Federation, 2, Moscowski Trakt, Tomsk, 634050

MD, PhD, Professor

References

  1. Гавриш А.С., Пауков В.С. Ишемическая кардиомиопатия. ― М.: ГЭОТАР-Медиа, 2015. ― 536 с. [Gavrish AS, Paukov VS. Ishemicheskaya kardiomiopatiya. Moscow: GEOTAR-Media, 2015. 536 р. (In Russ).]
  2. Guddeti RR, Matsuo Y, Matsuzawa Y, et al. Ischemic cardiomyopathy is associated with coronary plaque progression and higher event rate in patients after cardiac transplantation. J Am Heart Assoc. 2014;3(4):e001091. doi: 10.1161/JAHA.114.001091.
  3. Kwon DH, Obuchowski NA, Marwick TH, et al. Jeopardized myocardium defined by late gadolinium enhancement magnetic resonance imaging predicts survival in patients with ischemic cardiomyopathy: impact of revascularization. J Am Heart Assoc. 2018;7(22):e009394. doi: 10.1161/JAHA.118.009394.
  4. Kaya Z, Leib C, Katus HA. Autoantibodies in heart failure and cardiac dysfunction. Circ Res. 2012;110(1):145−158. doi: 10.1161/CIRCRESAHA.111.243360.
  5. Bansal SS, Ismahil MA, Goel M, et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation. 2019;139(2):206−221. doi: 10.1161/CIRCULATIONAHA.118.036065.
  6. Rojas J, Salazar J, Martínez MS, et al. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015;2015:851252. doi: 10.1155/2015/851252.
  7. Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Front Immunol. 2015;6:423. doi: 10.3389/fimmu.2015.00423.
  8. Boyette LB, Macedo C, Hadi K, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017;12(4):e0176460. doi: 10.1371/journal.pone.0176460.
  9. Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210−218. doi: 10.1016/S0735-1097(01)01738-7.
  10. Потапнев М.П. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого // Иммунология. ― 2014. ― Т.35. ― №2. ― С. 95−102. [Potapnev MP. Autophagy, apoptosis, necrosis and immune recognition of self and nonself. Immunologiia. 2014;35(2):95−102. (In Russ).]
  11. Чумакова С.П., Уразова О.И., Шипулин В.М., и др. Цитокины как индукторы постперфузионной системной воспалительной реакции у кардиохирургических больных с различной продолжительностью коронарной патологии // Бюллетень сибирской медицины. ― 2017. ― Т.16. ― №4. ― С. 260−268. [Chumakova SP, Urazova OI, Shipulin VM, et al. Cytokines as inducers of postperfusion systemic inflammatory reaction in cardiosurgical patients with different duration of coronary pathology. Bulletin of Siberian Medicine. 2017;16(4):260−268. (In Russ).] doi: 10.20538/1682-0363-2017-4-260-268.
  12. Wacleche VS, Tremblay CL, Routy JP, Ancuta P. The biology of monocytes and dendritic cells: contribution to HIV pathogenesis. Viruses. 2018;10(2):65. doi: 10.3390/v10020065.
  13. Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35(5):1066–1070. doi: 10.1161/ATVBAHA.114.304652.
  14. Лилли Л.С. Патофизиология сердечно-сосудистой системы / Под ред. Л.С. Лилли; пер. с англ. 4-е изд., испр. и перераб. ― М.: Бином. Лаборатория знаний, 2016. ― 735 c. [Lilly LS. Pathophysiology of the cardiovascular system. Ed by LS Lilly; transl. from English. 4th revised and updated. Moscow: Binom. Knowledge laboratory; 2016. 735 р. (In Russ).]
  15. Gagliani N, Huber S. Basic aspects of T-helper cell differentiation. T-cell differentiation: methods and protocols. Methods Mol Biol. 2017;1514:19–30. doi: 10.1007/978-1-4939-6548-9_2.
  16. Yıldırım C, Vogel DY, Hollander MR, et al. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages. PLoS One. 2015;10(4):e0124347. doi: 10.1371/journal.pone.0124347.
  17. Singhal A, Subramanian M. Colony stimulating factors (CSFs): complex roles in atherosclerosis. Cytokine. 2019;122:154190. doi: 10.1016/j.cyto.2017.10.012.
  18. Cappuzzello C, Di Vito L, Melchionna R, et al. Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-γ in patients with chronic heart failure. J Transl Med. 2011;9:28. doi: 10.1186/1479-5876-9-28.
  19. Wan DY, Zhang Z, Yang HH. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, alpha subunit inhibitor. Cell Mol Biol (Noisy-le-grand). 2015;61(2):1−6.
  20. Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37(9):364−372. doi: 10.1016/j.tibs.2012.06.004.
  21. Lin N, Simon MC. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest. 2016;126(10):3661−3671. doi: 10.1172/JCI84426.
  22. Hsiao HW, Hsu TS, Liu WH, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353. doi: 10.1038/ncomms7353.
  23. Серебренникова С.Н., Семинский И.Ж., Семенов Н.В., Гузовская Е.В. Интерлейкин-1, интерлейкин-10 в регуляции воспалительного процесса // Сибирский медицинский журнал. ― 2012. ― Т.115. ― №8. ― С. 5−7. [Serebrennikova SN, Seminskу IZh, Semenov NV, Guzovskaya EV. Interleukin-1, interleukin-10 in regulation of inflammatory process. Sibirskii meditsinskii zhurnal. 2012;115(8):5–7. (In Russ).]
  24. Wang LХ, Zhang SХ, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345−358. doi: 10.1002/JLB.3RU1018-378RR.
  25. Enninga EA, Nevala WK, Holtan SG, et al. Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res. 2016;26(5):429–441. doi: 10.1097/CMR.0000000000000281.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 293

PDF (Russian) - 1

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies