Structural Parameters of the Brain and Bone Structures of the Head and Neck in Patients with Various Types of Mucopolysaccharidoses According to Magnetic Resonance Imaging of the Brain
- Authors: Rykunova A.I.1, Vashakmadze N.D.1,2, Zhurkova N.V.1,3, Karkashadze G.A.1, Zakharova E.Y.3, Firumyants A.I.1,4, Surkov A.N.1,2
-
Affiliations:
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
- Pirogov Russian National Research Medical University
- Research Centre for Medical Genetics
- National Medical Research Center for Children’s Health
- Issue: Vol 78, No 5 (2023)
- Pages: 431-440
- Section: PEDIATRICS: CURRENT ISSUES
- Published: 22.01.2024
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/11613
- DOI: https://doi.org/10.15690/vramn11613
- ID: 11613
Cite item
Abstract
Background. Mucopolysaccharidoses are diseases from the group of lysosomal storage diseases that have a progressive course. CNS damage is one of the main factors in the development of severe, life-threatening complications. Aims — аssessment of structural changes in the brain and bones of the head and neck in patients with various types of mucopolysaccharidoses. Methods. The research included 136 children aged from 11 months to 17 years, 81 patients of which showed various types of mucopolysaccharidoses: MPS I — 15 people, MPS II — 37, MPS III A — 10, MPS IIIB — 4, MPS IIIC — 2, MPS IVA — 6, VI — 7 people. The control group included 56 children without neurological, psychiatric and severe somatic illnesses. Results. For mucopolysaccharidoses types I, II, III and VI, the most characteristic structural changes on the brain MRI were white matter lesions, mainly periventricular: expansion of the perivascular spaces (70%), atrophy of the cerebral hemispheres (42%), hippocampus, (31%), ventriculomegaly (6.2%), stenosis of the cervical spine (64%), hydrocephalus, expansion of the cerebrospinal fluid spaces of the posterior cranial fossa, arachnoid cysts. Conclusions. The results of the obtained data analysis made it possible to identify the macrostructural specifics of the brain disorders and cervical spine in various types of MPS, as well as their prognostic significance.
Full Text
About the authors
Anastasia I. Rykunova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Email: anarykunova@gmail.com
ORCID iD: 0000-0003-2458-4891
SPIN-code: 7873-9284
Junior Research Assistant
Россия, MoscowNato D. Vashakmadze
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
Email: nato-nato@yandex.ru
ORCID iD: 0000-0001-8320-2027
SPIN-code: 2906-9190
MD, PhD
Россия, Moscow; MoscowNatalia V. Zhurkova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Research Centre for Medical Genetics
Email: n1972z@yandex.ru
ORCID iD: 0000-0001-6614-6115
SPIN-code: 4768-6310
MD, PhD
Россия, Moscow; MoscowGeorgiy A. Karkashadze
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Email: karkga@mail.ru
ORCID iD: 0000-0002-8540-3858
SPIN-code: 6248-0970
MD, PhD
Россия, MoscowEkaterina Yu. Zakharova
Research Centre for Medical Genetics
Email: doctor.zakharova@gmail.com
ORCID iD: 0000-0002-5020-1180
SPIN-code: 7296-6097
MD, PhD
Россия, MoscowAlexey I. Firumyants
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; National Medical Research Center for Children’s Health
Email: alexfirum@gmail.com
ORCID iD: 0000-0002-5282-6504
Россия, Moscow; Moscow
Andrej N. Surkov
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
Author for correspondence.
Email: surkov@gastrockb.ru
ORCID iD: 0000-0002-3697-4283
SPIN-code: 4363-0200
MD, PhD
Россия, Moscow; MoscowReferences
- Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017;121(3):227–240. doi: https://doi.org/10.1016/j.ymgme.2017.05.016
- Kakkis E, Marsden D. Urinary glycosaminoglycans as a potential biomarker for evaluating treatment efficacy in subjects with mucopolysaccharidoses. Mol Genet Metab. 2020;130(1):7–15. doi: https://doi.org/10.1016/j.ymgme.2020.02.006
- Constantopoulos G, Iqbal K, Dekaban AS. Mucopolysaccharidosis types IH, IS, II, and IIIA: glycosaminoglycans and lipids of isolated brain cells and other fractions from autopsied tissues. J Neurochem. 1980;34(6):1399–1411. doi: https://doi.org/10.1111/j.1471-4159.1980.tb11220.х
- Bigger BW, Begley DJ, Virgintino D, et al. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab. 2018;125(4):322–331. doi: https://doi.org/10.1016/j.ymgme.2018.08.003
- Dekaban AS, Constantopoulos G. Mucopolysaccharidosis type I, II, IIIA and V. Pathological and biochemical abnormalities in the neural and mesenchymal elements of the brain. Acta Neuropathol. 1977;39(1):1–7. doi: https://doi.org/10.1007/BF00690379
- Parsons VJ, Hughes DG, Wraith JE. Magnetic resonance imaging of the brain, neck and cervical spine in mild Hunter’s syndrome (mucopolysaccharidoses type II). Clin Radiol. 1996;51(1):719–723. doi: https://doi.org/10.1016/s0009-9260(96)80246-7
- Shapiro EG, Nestrasil I, Delaney KA, et al. A prospective natural history study of mucopolysaccharidosis type IIIA. J Pediatr, 2016;170:278–287.
- Martins C, Hulková H, Dridi L, et al. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain, 2015;138:336–355.
- Wilkinson FL, Holley RJ, Langford-Smith KJ, et al. Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB. PLoS One. 2012;7():e35787. doi: https://doi.org/10.1371/journal.pone.0035787
- Winner LK, Marshall NR, Jolly RD, et al. Evaluation of disease lesions in the developing canine MPS IIIA brain. JIMD Rep. 2019;43:91–101. doi: https://doi.org/10.1007/8904_2018_110
- Vitry S, Ausseil J, Hocquemiller M, et al. Enhanced degradation of synaptophysin by the proteasome in mucopolysaccharidosis type IIIB. Mol Cell Neurosci. 2009;41(1):8–18. doi: https://doi.org/10.1016/j.mcn.2009.01.001
- Aragao de C, Bruno L, Han C, G. et al. Synaptic dysfunction in Sanfilippo syndrome type C. Mol Genet Metab. 2016;117:39.
- Fusar Poli E, Zalfa C, D’Avanzo F, et al. Murine neural stem cells model Hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. Cell Death Dis. 2013;4(11):e906. doi: https://doi.org/10.1038/cddis.2013.430
- Azevedo ACM, Artigalás O, Vedolin L, et al. Brain magnetic resonance imaging findings in patients with mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36(2):357–362. doi: https://doi.org/10.1007/s10545-012-9559-x
- Borlot F, Arantes PR, Quaio CR, et al. New insights in mucopolysaccharidosis type VI: neurological perspective. Brain Dev. 2014;36(7):585–592. doi: https://doi.org/10.1016/j.braindev.2013.07.016
- Alqahtani E, Huisman TA, Boltshauser E, et al. Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol. 2014;18(2):211–217. doi: https://doi.org/10.1016/j.ejpn.2013.11.014
- Heon-Roberts R, Nguyen ALA, Pshezhetsky AV, et al. Molecular Bases of Neurodegeneration and Cognitive Decline, the Major Burden of Sanfilippo Disease. J Clin Med. 2020;9(2):344. doi: https://doi.org/10.3390/jcm9020344
- Jones MZ, Alroy J, Rutledge JC, et al. Human mucopolysaccharidosis IIID: clinical, biochemical, morphological and immunohistochemical characteristics. J Neuropathol Exp Neurol. 1997;56(10):1158–1167.
- Manara R, Priante E, Grimaldi M, et al. Brain and spine MRI features of Hunter disease: frequency, natural evolution and response to therapy. J Inherit Metab Dis. 2011;34(3):763–780. doi: https://doi.org/10.1007/s10545-011-9317-5
- Vedolin L, Schwartz IVD, Komlos M, et al. Correlation of MR imaging and MR spectroscopy findings with cognitive impairment in mucopolysaccharidosis II. AJNR Am J Neuroradiol. 2007;28(6):1029–1033. doi: https://doi.org/10.3174/ajnr.A0510
- Fan Z, Styner M, Muenzer J, et al. Correlation of automated volumetric analysis of brain MR imaging with cognitive impairment in a natural history study of mu-copolysaccharidosis II. AJNR Am J Neuroradiol. 2010;31(7):1319–1323. doi: https://doi.org/10.3174/ajnr.A2032
- Jones MZ, Alroy J, Downs-Kelly E, et al. Caprine mucopolysaccharidosis IIID: fetal and neonatal brain and liver glycosaminoglycan and morphological perturbations. J Mol Neurosci. 2004;24(2):277–291. doi: https://doi.org/10.1385/JMN:24:2:277
- Zafeiriou DI, Savvopoulou-Augoustidou PA, Sewell A, et al. Serial magnetic resonance imaging findings in mucopolysaccharidosis IIIB (Sanfilippo’s syndrome B). Brain Dev. 2001;23(6):385–389. doi: https://doi.org/10.1016/s0387-7604(01)00242-x
- Seto T, Kono K, Morimoto K, et al. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann Neurol. 2001;50(1):79–92. doi: https://doi.org/10.1002/ana.1098
- Matheus MG, Castillo M, Smith JK, et al. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology. 2004;46(8):666–672. doi: https://doi.org/10.1007/s00234-004-1215-1
- Ozand PT, Thompson JN, Gascon GG, et al. Sanfilippo type D presenting with acquired language disorder but without features of mucopolysaccharidosis. J Child Neurol. 1994;9(4):408–411. doi: https://doi.org/10.1177/088307389400900415
- Verhoeven WM, Csepán R, Marcelis CL, et al. Sanfilippo B in an elderly female psychiatric patient: a rare but relevant diagnosis in presenile dementia. Acta Psychiatr Scand. 2010;122(2):162–165. doi: https://doi.org/10.1111/j.1600-0447.2009.01521.x
- Nestrasil I, Vedolin L. Quantitative neuroimaging in mucopolysaccharidoses clinical trials. Mol Genet Metab. 2017:122S:17–24. doi: https://doi.org/10.1016/j.ymgme.2017.09.006
- Reichert R, Pérez JA, Dalla-Corte A, et al. Magnetic resonance imaging findings of the posterior fossa in 47 patients with mucopolysaccharidoses: A cross-sectional analysis. JIMD Rep. 2021:60(1):32–41. doi: https://doi.org/10.1002/jmd2.12212
- Żuber Z, Jurecka A, Jurkiewicz E, et al. Cervical spine MRI findings in patients with mucopolysaccharidosis type II. Pediatr Neurosurg. 2015;50(1):26–30. doi: https://doi.org/10.1159/000371658
- Samia P, Wieselthaler N, van der Watt GF, et al. Hemiatrophy of the spinal cord in a patient with mucopolysaccharidosis type IIIB. J Child Neurol. 2010;25(10):1288–1291. doi: https://doi.org/10.1177/0883073809360416
- Kovac V, Shapiro EG, Rudser KD, et al. Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. Mol Genet Metab. 2022;135(2):122–132. doi: https://doi.org/10.1016/j.ymgme.2022.01.001
- Borlot F, Arantes PR, Quaio CR, et al. Mucopolysaccharidosis type IVA: evidence of primary and secondary central nervous system involvement. Am J Med Genet A. 2014;164A(5):1162–1169. doi: https://doi.org/10.1002/ajmg.a.36424
- Ebbink BJ, Brands MMG, van den Hout JMP, et al. Long-term cognitive follow-up in chil-dren treated for Maroteaux–Lamy syndrome. J Inherit Metab Dis. 2016;39(2):285–292. doi: https://doi.org/10.1007/s10545-015-9895-8
- Pradilla G, Jallo G. Arachnoid cysts: case series and review of the literature. Neuro-surg Focus. 2007;22(2):E7. doi: https://doi.org/10.3171/foc.2007.22.2.7