Structural Parameters of the Brain and Bone Structures of the Head and Neck in Patients with Various Types of Mucopolysaccharidoses According to Magnetic Resonance Imaging of the Brain

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Mucopolysaccharidoses are diseases from the group of lysosomal storage diseases that have a progressive course. CNS damage is one of the main factors in the development of severe, life-threatening complications. Aims — аssessment of structural changes in the brain and bones of the head and neck in patients with various types of mucopolysaccharidoses. Methods. The research included 136 children aged from 11 months to 17 years, 81 patients of which showed various types of mucopolysaccharidoses: MPS I — 15 people, MPS II — 37, MPS III A — 10, MPS IIIB — 4, MPS IIIC — 2, MPS IVA — 6, VI — 7 people. The control group included 56 children without neurological, psychiatric and severe somatic illnesses. Results. For mucopolysaccharidoses types I, II, III and VI, the most characteristic structural changes on the brain MRI were white matter lesions, mainly periventricular: expansion of the perivascular spaces (70%), atrophy of the cerebral hemispheres (42%), hippocampus, (31%), ventriculomegaly (6.2%), stenosis of the cervical spine (64%), hydrocephalus, expansion of the cerebrospinal fluid spaces of the posterior cranial fossa, arachnoid cysts. Conclusions. The results of the obtained data analysis made it possible to identify the macrostructural specifics of the brain disorders and cervical spine in various types of MPS, as well as their prognostic significance.

Full Text

Restricted Access

About the authors

Anastasia I. Rykunova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: anarykunova@gmail.com
ORCID iD: 0000-0003-2458-4891
SPIN-code: 7873-9284

Junior Research Assistant

Russian Federation, Moscow

Nato D. Vashakmadze

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University

Email: nato-nato@yandex.ru
ORCID iD: 0000-0001-8320-2027
SPIN-code: 2906-9190

MD, PhD

Russian Federation, Moscow; Moscow

Natalia V. Zhurkova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Research Centre for Medical Genetics

Email: n1972z@yandex.ru
ORCID iD: 0000-0001-6614-6115
SPIN-code: 4768-6310

MD, PhD

Russian Federation, Moscow; Moscow

Georgiy A. Karkashadze

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: karkga@mail.ru
ORCID iD: 0000-0002-8540-3858
SPIN-code: 6248-0970

MD, PhD

Russian Federation, Moscow

Ekaterina Yu. Zakharova

Research Centre for Medical Genetics

Email: doctor.zakharova@gmail.com
ORCID iD: 0000-0002-5020-1180
SPIN-code: 7296-6097

MD, PhD

Russian Federation, Moscow

Alexey I. Firumyants

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; National Medical Research Center for Children’s Health

Email: alexfirum@gmail.com
ORCID iD: 0000-0002-5282-6504
Russian Federation, Moscow; Moscow

Andrej N. Surkov

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University

Author for correspondence.
Email: surkov@gastrockb.ru
ORCID iD: 0000-0002-3697-4283
SPIN-code: 4363-0200

MD, PhD

Russian Federation, Moscow; Moscow

References

  1. Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017;121(3):227–240. doi: https://doi.org/10.1016/j.ymgme.2017.05.016
  2. Kakkis E, Marsden D. Urinary glycosaminoglycans as a potential biomarker for evaluating treatment efficacy in subjects with mucopolysaccharidoses. Mol Genet Metab. 2020;130(1):7–15. doi: https://doi.org/10.1016/j.ymgme.2020.02.006
  3. Constantopoulos G, Iqbal K, Dekaban AS. Mucopolysaccharidosis types IH, IS, II, and IIIA: glycosaminoglycans and lipids of isolated brain cells and other fractions from autopsied tissues. J Neurochem. 1980;34(6):1399–1411. doi: https://doi.org/10.1111/j.1471-4159.1980.tb11220.х
  4. Bigger BW, Begley DJ, Virgintino D, et al. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab. 2018;125(4):322–331. doi: https://doi.org/10.1016/j.ymgme.2018.08.003
  5. Dekaban AS, Constantopoulos G. Mucopolysaccharidosis type I, II, IIIA and V. Pathological and biochemical abnormalities in the neural and mesenchymal elements of the brain. Acta Neuropathol. 1977;39(1):1–7. doi: https://doi.org/10.1007/BF00690379
  6. Parsons VJ, Hughes DG, Wraith JE. Magnetic resonance imaging of the brain, neck and cervical spine in mild Hunter’s syndrome (mucopolysaccharidoses type II). Clin Radiol. 1996;51(1):719–723. doi: https://doi.org/10.1016/s0009-9260(96)80246-7
  7. Shapiro EG, Nestrasil I, Delaney KA, et al. A prospective natural history study of mucopolysaccharidosis type IIIA. J Pediatr, 2016;170:278–287.
  8. Martins C, Hulková H, Dridi L, et al. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain, 2015;138:336–355.
  9. Wilkinson FL, Holley RJ, Langford-Smith KJ, et al. Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB. PLoS One. 2012;7():e35787. doi: https://doi.org/10.1371/journal.pone.0035787
  10. Winner LK, Marshall NR, Jolly RD, et al. Evaluation of disease lesions in the developing canine MPS IIIA brain. JIMD Rep. 2019;43:91–101. doi: https://doi.org/10.1007/8904_2018_110
  11. Vitry S, Ausseil J, Hocquemiller M, et al. Enhanced degradation of synaptophysin by the proteasome in mucopolysaccharidosis type IIIB. Mol Cell Neurosci. 2009;41(1):8–18. doi: https://doi.org/10.1016/j.mcn.2009.01.001
  12. Aragao de C, Bruno L, Han C, G. et al. Synaptic dysfunction in Sanfilippo syndrome type C. Mol Genet Metab. 2016;117:39.
  13. Fusar Poli E, Zalfa C, D’Avanzo F, et al. Murine neural stem cells model Hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. Cell Death Dis. 2013;4(11):e906. doi: https://doi.org/10.1038/cddis.2013.430
  14. Azevedo ACM, Artigalás O, Vedolin L, et al. Brain magnetic resonance imaging findings in patients with mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36(2):357–362. doi: https://doi.org/10.1007/s10545-012-9559-x
  15. Borlot F, Arantes PR, Quaio CR, et al. New insights in mucopolysaccharidosis type VI: neurological perspective. Brain Dev. 2014;36(7):585–592. doi: https://doi.org/10.1016/j.braindev.2013.07.016
  16. Alqahtani E, Huisman TA, Boltshauser E, et al. Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol. 2014;18(2):211–217. doi: https://doi.org/10.1016/j.ejpn.2013.11.014
  17. Heon-Roberts R, Nguyen ALA, Pshezhetsky AV, et al. Molecular Bases of Neurodegeneration and Cognitive Decline, the Major Burden of Sanfilippo Disease. J Clin Med. 2020;9(2):344. doi: https://doi.org/10.3390/jcm9020344
  18. Jones MZ, Alroy J, Rutledge JC, et al. Human mucopolysaccharidosis IIID: clinical, biochemical, morphological and immunohistochemical characteristics. J Neuropathol Exp Neurol. 1997;56(10):1158–1167.
  19. Manara R, Priante E, Grimaldi M, et al. Brain and spine MRI features of Hunter disease: frequency, natural evolution and response to therapy. J Inherit Metab Dis. 2011;34(3):763–780. doi: https://doi.org/10.1007/s10545-011-9317-5
  20. Vedolin L, Schwartz IVD, Komlos M, et al. Correlation of MR imaging and MR spectroscopy findings with cognitive impairment in mucopolysaccharidosis II. AJNR Am J Neuroradiol. 2007;28(6):1029–1033. doi: https://doi.org/10.3174/ajnr.A0510
  21. Fan Z, Styner M, Muenzer J, et al. Correlation of automated volumetric analysis of brain MR imaging with cognitive impairment in a natural history study of mu-copolysaccharidosis II. AJNR Am J Neuroradiol. 2010;31(7):1319–1323. doi: https://doi.org/10.3174/ajnr.A2032
  22. Jones MZ, Alroy J, Downs-Kelly E, et al. Caprine mucopolysaccharidosis IIID: fetal and neonatal brain and liver glycosaminoglycan and morphological perturbations. J Mol Neurosci. 2004;24(2):277–291. doi: https://doi.org/10.1385/JMN:24:2:277
  23. Zafeiriou DI, Savvopoulou-Augoustidou PA, Sewell A, et al. Serial magnetic resonance imaging findings in mucopolysaccharidosis IIIB (Sanfilippo’s syndrome B). Brain Dev. 2001;23(6):385–389. doi: https://doi.org/10.1016/s0387-7604(01)00242-x
  24. Seto T, Kono K, Morimoto K, et al. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann Neurol. 2001;50(1):79–92. doi: https://doi.org/10.1002/ana.1098
  25. Matheus MG, Castillo M, Smith JK, et al. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology. 2004;46(8):666–672. doi: https://doi.org/10.1007/s00234-004-1215-1
  26. Ozand PT, Thompson JN, Gascon GG, et al. Sanfilippo type D presenting with acquired language disorder but without features of mucopolysaccharidosis. J Child Neurol. 1994;9(4):408–411. doi: https://doi.org/10.1177/088307389400900415
  27. Verhoeven WM, Csepán R, Marcelis CL, et al. Sanfilippo B in an elderly female psychiatric patient: a rare but relevant diagnosis in presenile dementia. Acta Psychiatr Scand. 2010;122(2):162–165. doi: https://doi.org/10.1111/j.1600-0447.2009.01521.x
  28. Nestrasil I, Vedolin L. Quantitative neuroimaging in mucopolysaccharidoses clinical trials. Mol Genet Metab. 2017:122S:17–24. doi: https://doi.org/10.1016/j.ymgme.2017.09.006
  29. Reichert R, Pérez JA, Dalla-Corte A, et al. Magnetic resonance imaging findings of the posterior fossa in 47 patients with mucopolysaccharidoses: A cross-sectional analysis. JIMD Rep. 2021:60(1):32–41. doi: https://doi.org/10.1002/jmd2.12212
  30. Żuber Z, Jurecka A, Jurkiewicz E, et al. Cervical spine MRI findings in patients with mucopolysaccharidosis type II. Pediatr Neurosurg. 2015;50(1):26–30. doi: https://doi.org/10.1159/000371658
  31. Samia P, Wieselthaler N, van der Watt GF, et al. Hemiatrophy of the spinal cord in a patient with mucopolysaccharidosis type IIIB. J Child Neurol. 2010;25(10):1288–1291. doi: https://doi.org/10.1177/0883073809360416
  32. Kovac V, Shapiro EG, Rudser KD, et al. Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. Mol Genet Metab. 2022;135(2):122–132. doi: https://doi.org/10.1016/j.ymgme.2022.01.001
  33. Borlot F, Arantes PR, Quaio CR, et al. Mucopolysaccharidosis type IVA: evidence of primary and secondary central nervous system involvement. Am J Med Genet A. 2014;164A(5):1162–1169. doi: https://doi.org/10.1002/ajmg.a.36424
  34. Ebbink BJ, Brands MMG, van den Hout JMP, et al. Long-term cognitive follow-up in chil-dren treated for Maroteaux–Lamy syndrome. J Inherit Metab Dis. 2016;39(2):285–292. doi: https://doi.org/10.1007/s10545-015-9895-8
  35. Pradilla G, Jallo G. Arachnoid cysts: case series and review of the literature. Neuro-surg Focus. 2007;22(2):E7. doi: https://doi.org/10.3171/foc.2007.22.2.7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Comparative characteristics of structural changes in the brain and bone structures of the head and neck in patients with different types of mucopolysaccharidosis

Download (307KB)
3. Fig.2. Focal changes in white matter and expansion of perivascular spaces. On axial images in T2-VI mode (A) and FLAIR (B) and sagittal images in T2-VI mode (C, D) - damage to the white matter of the cerebral hemispheres in the form of zones of hyperintense signal (blue arrows), expansion of perivascular spaces (short green arrows) in the peri- and intracallous areas, in the periventricular white matter

Download (304KB)
4. Fig.3. Expansion of the Virchow-Robert spaces in a patient with MPS II (high degree), focal changes are also presented - periventricular, deep, subcortical, cervical spinal stenosis, ventricular dilatation. A - sagittal projection, B - axial projection.

Download (163KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies